Table of Contents

Welcome Message from the General Chairs	3
IUS 2022 Organizing Committee	4
Welcome Message from the Technical Program Chairs	5
IUS 2022 Technical Program Committee	6
General Information	9
Exhibitor Layout	10
Plenary Speakers	12
Closing Session	12
Invited Speakers	13
Short Courses	17
Student Events	18
Women in Engineering Lunch	18
LAUS Panel	18
ULTRA-SR Challenge	19
Industry Events	20
Young Professional's Panels	20
Program at a Glance	21
Tuesday, October 11: Student Poster Competition	28
Tuesday, October 11: Technical Program	29
Wednesday, October 12: Technical Program	52
Thursday, October 13: Technical Program	77
Patron Seminars	103
Conference Sponsors	104
Conference Patrons	105

Welcome Message from the General Chairs

Welcome to IEEE IUS 2022, Venice Conference Center on Lido Island

Whether you are attending IEEE IUS 2022 in person or virtually, we hope that this meeting, organized in the beautiful, bridge-spanned city of Venice, will allow you to build many bridges of productive exchange of your own. Whether that be with the leaders in the field of ultrasonics from industry and academia, or in sharing ideas among the generations, ranging from the most experienced emeriti to students starting out with a totally fresh perspective.

There are some interesting links between the IUS 2022 and the local history. For example, the most celebrated festival in Venice is the Festa del Redentore, taking place on the 3rd Sunday of July to celebrate the end of the plague in 1577. Here, nearly 450 years later we are celebrating widening opportunities to meet together again as the recent pandemic begins to wane. Meanwhile, the nearby University of Padova celebrates 800 years of freedom of thought this year, while at IUS we will celebrate the 150-year anniversary of the birth of Paul Langevin and his contributions to the foundations of the field of ultrasound in our Closing Session.

For those who will be able to attend in person, we hope that in addition to rich experiences at the conference, they will be marked by the beauty and history of this municipality in the Venice lagoon. An agent will be available in the exhibit area to help you organize your visit to the city. The social program aims to provide relaxed time to catch up with old friends and to make new connections. The reception mixer at the venue on Tuesday will be flavored with the celebrated arts of Venice. The gala dinner on Wednesday will be served with flair at the beautiful Excelsior Hotel.

Thank you to the IEEE UFFC-S for management and sponsorship of the IUS 2022. We are also very grateful to all the patrons and exhibitors who are supporting IUS 2022. Their financial contributions enrich technical and social events, while their availability at the meeting provides a valuable source of information about state-of-the-art commercial technologies in our field. Special thanks are extended for the especially strong support provided by FujiFilm VisualSonics and Verasonics as Platinum patrons, Vermon and Cephasonics Ultrasound as Gold patrons, and STMicroelectronics, us4us and Ferroperm Piezoceramics A/S as Silver patrons. Please see the full list of sponsors here: https://2022.ieee-ius.org/patrons-exhibitors/

If you visit the IUS 2022 website you can see the faces and names of all the members of the organizing committee who have worked with creativity and professionalism to pull together the countless elements behind a wonderful conference experience. We have been accompanied in this task by the outstanding members of the professional conference organizers: Conference Catalysts and, locally, The Office.

We very sincerely wish you an exciting and productive few days together both in Venice and from afar.

IUS General Co-Chair
S. Lori Bridal, CNRS and Sorbonne University
(France)

IUS General Co-Chair Enrico Grisan, London South Bank University (UK) and University of Padova (Italy)

500 por

IUS 2022 Organizing Committee

General Chairs

Lori Bridal Enrico Grisan

Technical Program Chairs

Georg Schmitz
Mengxing Tang

Finance Chairs

Elsa Angelini Daniel Stevens Christine Demore

Award Chair

Jan Brown

Short Courses Chairs

Piero Tortoli Roberto Lavarello

Challenge Chairs

Hervé Liebgott Muyinatu Bell

Publications Chairs

Peter Lewin Alfred Yu

Program Chair

Sevan Harput

Hybrid Chair

Libertario Demi

Publicity Chairs

Helen Mulvana Guofeng Chen **Sponsor Chair**

Luca De Marchi Cyril Lafon

Industrial Engagement Chair

Aqsa Patel Kartik Sondhi

Student Affairs Chairs

Joel Harley Simona Turco

Diversity and Inclusion Chairs

Sheronica James Sahil Sharma

WIE Chairs

Dana Weinstein Meaghan O'Reilly

Local Arrangements Chairs

Giulia Matrone

Alessandro Stuart Savoia

User Experience Chair

Hoda Hashemi

IUS Guidance Committee Chair

Jan D'hooge

IEEE UFFC-S VP Symposia

Sandy Cochran

IEEE UFFC-S President

Mark Schafer

Welcome Message from the Technical Program Chairs

Dear members of the Ultrasonics community,

The technical program committee has created a dynamic IUS 2022. We sincerely hope that the on-demand content and the CONFlux platform will allow everyone to take even greater advantage of the wealth of scientific content offered over these three, fully-packed days.

On Monday, 15 short courses will be presented to attendees in Venice and in their home countries. In all, 1587 original abstracts were contributed and selected after peer review to compose up to 9 parallel sessions to provide a forum for 1174

contributing authors (720 posters and 501 oral presentations) spanning key fields in ultrasound. The symposium is highly international with authors from 42 countries around the world presenting their work during the 3-day technical program.

We are pleased to announce that on Tuesday, Sir John Pendry of Imperial College London will present an exciting, opening keynote presentation on *Waves in time dependent systems*. His talk will explain paradoxical phenomena of apparently acausal wave behavior, such as bending light to make an invisibility cloak, and promises to show some conceptual cross-over from nano-optics to acoustics. We will also take time to celebrate the many contributions made to the UFFC-S society over the year, with the presentation of the UFFC Awards.

Throughout the technical program, we have three clinical speakers and 20 invited talks. The Tuesday Student Paper Competition finalist's posters, will be completed by oral presentations of their work on Wednesday or Thursday. The Student Paper awards and the Ultrasonics awards will be given at the plenary session that closes the first day of the technical program.

Students can buff-up their CV writing and interview skills and network with professionals on Wednesday. They will also highlight oratorical skills at the Student Pitch Competition on Thursday. The biannual challenge event will be on Ultrasound Localisation and Tracking Algorithms for Super Resolution (Ultra-SR Challenge) this year. Sponsored by Verasonics, Bracco and Philips, it has a dedicated double-session on Wednesday and has attracted 26 participants from 12 countries. There are also many networking events such as the Women in Engineering lunch, the Young Professionals Panels I & II, Industry Mock Interviews, Industry Technical Roundtables and the Industry Workshops.

The Closing Session, featuring a celebration of the 150th Anniversary of the birth of Paul Langevin, the originator of modern ultrasound, will be presented by Francis Duck and Tom Szabo. It will be followed by the Ultra-SR Challenge award, conference highlights and a few words in closing.

IUS Technical Program Chair Georg Schmitz, Ruhr-Universität Bochum (Germany)

(fee in

IUS Technical Program Chair Mengxing Tang, Imperial College London (UK)

IUS 2022 Technical Program Committee

Group 1: Medical Ultrasonics

Group Chair: Hervé Liebgott, University of

Lyon, CREATIS

Co-Chair: Helen Mulvana, University of

Strathclyde

Mike Averkiou, University of Washington Kenneth Bader, University of Chicago Adrian Basarab, University of Lyon Carolyn Bayer, Tulane University Muyinatu Bell, Johns Hopkins University Mark Borden, University of Colorado Boulder Ayache Bouakaz, INSERM Lori Bridal, CNRS at Sorbonne University

Matthew Bruce, University of Washington

Elisabeth Brusseau, CNRS Ewen Carcreff, TPAC

Stefan Catheline, INSERM, LabTAU Jean-Yves Chapelon, INSERM Shigao Chen, Mayo Clinic

Hong Chen, Washington University in St.

Louis Parag Chitnis, George Mason University

Magnus Cinthio, Lund University Guy Cloutier, University of Montreal

Olivier Couture, CNRS at Sorbonne University Jan D'hooge, Catholic University of Leuven

Jeremy Dahl, Stanford University

Paul Dayton, University of North Carolina Nico de Jong, Erasmus Medical Centre Chris de Korte, Radboud University Medical Center

Libertario Demi, University of Trento Marvin Doyley, University of Rochester Emad Ebbini, University of Minnesota Yonina Eldar, Weizmann Institute of Science Stanislav Emelianov, Georgia Institute of Technology and Emory University School of Medicine

Mostafa Fatemi, Mayo Clinic
Kathy Ferrara, Stanford University
Stuart Foster, University of Toronto
Brian Fowlkes, University of Michigan
Steven Freear, University of Leeds
Caterina Gallinni, University of North Caroli

Caterina Gallippi, University of North Carolina Damien Garcia, INSERM

James Greenleaf, Mayo Clinic

Aiguo Han, University of Illinois at Urbana-Champaign

Hideyuki Hasegawa, University of Toyama Peter Hoskins, University of Edinburgh John Hossack, University of Virginia Chih-Chung Huang, National Cheng Kung University

Safeer Hyder, Sukkur IBA University

Jørgen Jensen, Technical University Denmark

Jonas Jensen, BK Medical Hiroshi Kanai, Tohoku University George Kapodistrias, Samsung Research America

Jeff Ketterling, Weill Cornell Medicine Kang Kim, University of Pittsburgh Michael Kolios, Ryerson University Elisa Konofagou, Columbia University

Klazina Kooiman, Thoraxcenter, Erasmus MC Denis Kouamé, U Paul Sabatier Toulouse

Nobuki Kudo, Hokkaido University Arun Kumar Thittai, Indian Institute of

Technology Madras

Cyril Lafon, INSERM, LabTAU

Roberto Lavarello, Pontificia Universidad

Católica del Perú

Wei-Ning Lee, University of Hong Kong Pai-Chi Li, National Taiwan University Hervé Liebgott, University of Lyon Richard Lopata, Eindhoven University of

Technology

Thanasis Loupas, Philips Ultrasound Lasse Lovstakken, Norwegian University of

Science and Technology
Jian-yu Lu, University of Toledo
Geoff Luke, Dartmouth College
Jianwen Luo, Tsinghua University

João Machado, University of Rio de Janeiro Jonathan Mamou, Weill Cornell Medicine

Giulia Matrone, University of Pavia Mami Matsukawa, Doshisha University Bob McGough, Michigan State U.

Mohammad Mehrmohammadi, Wayne State U Karla Mercado-Shekhar, Indian Institute of

Technology Gandhinagar

Massimo Mischi, Einhoven University of

Technology

Larry Mo, Independent Consultant

Marie Muller, North Carolina State University Helen Mulvana, University of Strathclyde Kathy Nightingale, Duke University

Svetoslav Nikolov, BK Ultrasound William O'Brien, University of Illinois Michael Oelze, University of Illinois

Virginie Papadopoulou, University of North

Carolina at Chapel Hill

Theo Pavan, University of Sao Paulo

Mathieu Pernot, ESPCI Paris

Gianmarco Pinton, U. North Carolina Jean Provost, École Polytechnique de

Montréal

Alessandro Ramalli, University of Florence Yoshifumi Saijo, Tohoku University Georg Schmitz, Ruhr-Universität Bochum Ralf Seip, SonaCare Medical, LLC

Himanshu Shekhar, Indian Institute of

Technology Gandhinagar

Pengfei Song, University of Illinois

Dean Ta, Fudan University

Mengxing Tang, Imperial College London Mickael Tanter, INSERM Kai Thomenius, Massachusetts General Hospital Piero Tortoli, University of Florence

Juan Tu, Nanjing University Matthew Urban, Mayo Clinic

Ton van der Steen, Erasmus Medical Centre Tomy Varghese, U. Wisconsin

Francois Vignon, Philips Research North America

Mingxi Wan, Xi'an Jiaotong University Xueding Wang, University of Michigan Kendall Waters. Siemens Healthineers Keith Wear, Food and Drug Administration Wilko Wilkening, Siemens Healthineers

James Wiskin, QT Ultrasound Inc. Tao Wu, ShanghaiTech University Zhen Xu, University of Michigan Tadashi Yamaguchi, Chiba University Chih-Kuang Yeh, National Tsing Hua University Shin Yoshizawa, Tohoku University

Alfred Yu, University of Waterloo Roger Zemp, University of Alberta Bajram Zeqiri, National Physical Laboratory

Xiaoming Zhang, Mayo Clinic

Yue Zhao, Harbin Institute of Technology Hairong Zheng, Shenzhen Institutes of Advanced Technology

Yujin Zong, Xi'an Jiaotong University

Group 2: Sensors, NDE & Industrial Applications

Group Chair: Kui Yao, A*STAR, Singapore Co-Chair: Erdal Oruklu, Illinois Institute of Technology

Robert C. Addison, Rockwell Science Center Walter Arnold, Fraunhofer Institute for Nondestructive Testing James Blackshire, Air Force Research Laboratory Ramazan Demirli, Arable Labs James Friend, UCSD

Anthony Gachagan, University of Strathclyde, Glasgow

David Greve, Carnegie Mellon University Edward Haeggstrom, University of Helsinki Joel Harley, University of Florida Jacqueline Hines, Applied Sensor R&D Corporation

Patrick Johnston, NASA Langley Research Center

Lawrence W. Kessler, Sonoscan Inc.

Mario Kupnik, Technische Universität Darmstadt

Yufeng Lu, Bradley University Roman Maev, University of Windsor Donald McCann, Seadrill

Jennifer Michaels, Georgia Institute of

Technology Kentaro Nakamura, Tokyo Institute of

Technology

Erdal Oruklu, Illinois Institute of Technology Nishal Ramadas, Hv-Met Limited, UK Jafar Saniie, Illinois Institute of Technology Bernhard Tittmann, Pennsylvania State University

John F. Vetelino, University of Maine Paul Wilcox, University of Bristol William Wright, University College Cork Kui Yao, A*STAR, Singapore

Donald E. Yuhas, Industrial Measurement Systems

Group 3: Physical Acoustics

Group Chair: Yook-Kong Yong, Rutgers University

Co-Chair: Dave Feld, Skyworks, Inc.

Anne Bernassau, Heriot Watt University Jan Brown, JB Consulting Charles Courtney, University of Bath

Dave Feld, Skyworks, Inc. Agnes Huynh, Institut des NanoSciences de

Paris Brice Ivira, Broadcom Ltd Yun Jing, Penn State University Takefumi Kanda, Okayama University Piotr Kiełczyński, Polish Academy of Sciences

Eun Sok Kim, University of Southern California Kimmo Kokkonen, Qualcomm, Inc.

Minoru Kuribayashi Kurosawa, Tokyo Institute of Technology

Amit Lal, Cornell University

John Larson, Broadcom Ltd Vincent Laude, FEMTO-ST / CNRS Margaret Lucas, University of Glasgow Teng Ma. SIAT Andreas Mayer, HS Offenburg – Univ. of

Applied Sciences, Gengenbach

Alex Maznev, MIT

Anthony Mulholland, University of Bristol

Mihir Patel, Skyworks, Inc.

Masaya Takasaki, Saitama University Koen W.A. van Dongen, Delft University of Technology

István A. Veres, Qorvo Inc.

Jörg Wallaschek, Leibniz Universität Hannover Ji Wang, Ningbo University

Takahiko Yanagitani, Waseda University Yook-Kong Yong, Rutgers University Likun Zhang, University of Mississippi

Group 4: Microacoustics - SAW, FBAR & MEMS

Group Chair: Amelie Hagelauer, University of Bayreuth

Co-Chair: Shuji Tanaka, Tohoku University Ben Abbott, Skyworks Solutions, Inc.

Robert Aigner, Qorvo, Inc.

Ausrine Bartasyte. University of Franche-

Comté

Sunil Bhave, Purdue University Paul Bradlev. Broadcom Ltd.

Marta Clement, Polytechnic University of

Madrid (UPM)

Omar Elmazria, Université de Lorraine Songbin Gong, University of Illinois at Urbana

Champaign

Amelie Hagelauer, Technical University of

Munich

Tao Han, Shanghai Jiao Tong University Ken-ya Hashimoto, Chiba University

Shogo Inoue, Qorvo, Inc.

Michio Kadota, Tohoku University

Jyrki Kaitila

Jan Kuypers, Blickfeld GmbH

Ryo Nakagawa, Murata Manufacturing Co.,

Ltd.

Hiroyuki Nakamura, Skyworks Solutions, Inc. Natalya Naumenko, National University of

Science and Technology "MISIS"

Tuomas Pensala, VTT Technical Research

Centre of Finland

Mauricio Pereira da Cunha, University of

Maximilian Pitschi, Qualcomm / RF360 Europe

GmbH

Matteo Rinaldi, Northeastern University

Rich Ruby, Broadcom Ltd.

Hagen Schmidt, Leibniz Institute for Solid State and Materials Research Dresden (IFW

Dresden)

Marc Solal, Qorvo, Inc.

Shuji Tanaka, Tohoku University Masanori Ueda, Taiyo Yuden Co., Ltd. Karl Wagner, Qualcomm / RF360 Europe

GmbH

Ventsislav Yantchev, Chalmers University of

Technology

Sergei Zhgoon, National Research University "MPEI" (Moscow Power Engineering Institute)

Group 5: Transducers & Transducer Materials

Group Chair: Omer Oralkan, NC State

University

Co-Chair: Alessandro Stuart Savoia, Roma

Tre University

Jeremy Brown, Dalhousie University Dominique Certon, François Rabelais

University of Tours

David Cowell, University of Leeds Christopher Daft, River Sonic Solutions Loriann Davidsen, Philips Healthcare Christine Démoré, University of Toronto Charles Emery, Method Surgical Al Arif Sanli Ergun, Orchard Ultrasound

Innovation, LLC

Nicolas Felix. Vermon SA Tomas Gomez, CSIC, Madrid

Anne-Christine Hladky, Institut Supérieur d'Electronique et du Numerique

Xiaoning Jiang, NC State University Valsala Kurusingal, Thales Australia Koko Lam, The Hong Kong Polytechnic

University

Ho-yong Lee, Ceracomp Co., Ltd Xiang Li, Acoustic Life Science Co., Ltd. Franck Levassort, François Rabelais

University of Tours

Richard O'Leary, University of Strathclyde

Omer Oralkan, NC State University

Weibao Qiu, Shenzhen Institutes of Advanced

Technology

Wei Ren, Xi'an Jiaotong University

Yongrae Roh, Kyungpook National University

Stefan Rupitsch, Friedrich-Alexander

University

Alessandro Stuart Savoia, Roma Tre

University

Jessica Liu Strohmann, Qualcomm

Susan Trolier-McKinstry, Pennsylvania State

University

Jian Yuan, ALS Shanghai

Shujun Zhang, University of Wollongong Qifa Zhou, University of Southern California

General Information

Venue

The Conference Center

Venice Convention Center, Lido Island, Lungomare Guglielmo Marconi, 30, 30126 Venezia VE, Italy

Hotel Excelsion

Lungomare Guglielmo Marconi, 41

Registration Hours

Please visit the registration desk in Palazzo del Casinò to pick up your registration materials. You will only need to check-in once to pick up your badge.

CONFlux Virtual Platform

Login credentials will be sent out to all registrants a few days ahead of the conference. https://ius2022.conflux.events/

Monday, October 10

7:45 - Short Course Badge Pick-Up 8:30 to 18:00 – Attendee Badge Pick-Up

Tuesday, October 11

7:30 to 18:30 - Registration Open

Wednesday, October 12

7:30 to 18:00 - Registration Open

Thursday, October 13

7:30 to 18:30 - Registration Open

Poster Sessions

The poster sessions will be held in Sala Laguna and Sala Adriatico on the 3rd floor of the Palazzo del Casino. To help you find the posters you are most interested in, a numbered layout map will be posted in these rooms and on the IUS 2022 web site.

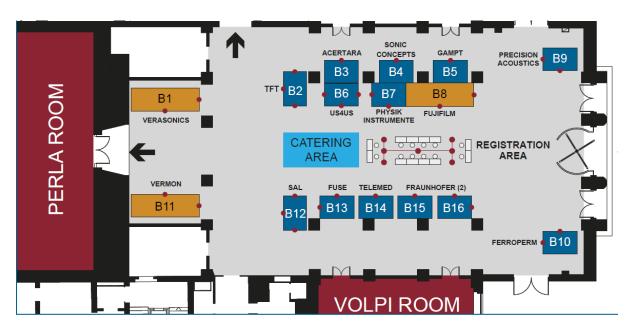
Proceedings

The final Proceedings will be sent to attendee post-conference.

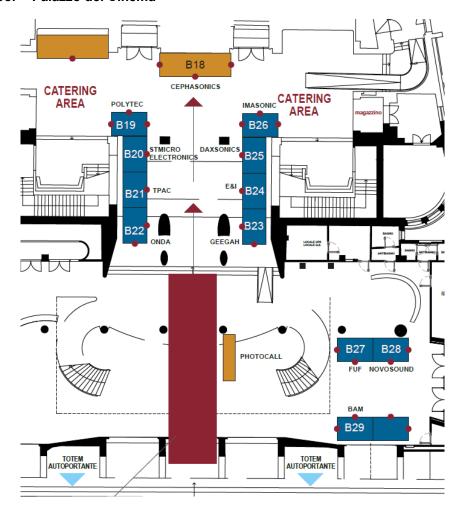
Speaker-Ready Room

Sala Frau (Cinema 2.1)

ALL speakers with an oral presentation **MUST** bring their presentation slides (on a USB drive) to the speaker-ready **at least 3 hours** prior to their scheduled presentation time so that technicians there can upload the slides to their session-room computer. For those presenting in the first morning session, slides must be submitted in the speaker ready room between 15:00 and 18:00 of **the day BEFORE** the presentation.


It will NOT be possible to bring your presentation slides directly to the session room and presentations from personal laptops will NOT be possible.

The speaker ready room will be open on Monday from 18:00-20:00, Tuesday from 7:30-18:00, Wednesday from 7:30-18:00 and Thursday from 7:30-16:30.


The venue floorplans will be posted on the conference website. https://2022.ieee-ius.org/

Exhibitor Layout

First Floor - Palazzo del Casinò

Ground Floor - Palazzo del Cinema

Company	Booth Assigned
Acertara Acoustic Laboratories	3
Cephasonics Ultrasound	18
Daxsonics Ultrasound Inc.	25
Electronics & Innovation Ltd	24
Ferroperm Piezoceramics A/S	10
Focused Ultrasound Foundation	27
Fraunhofer IBMT	15, 16
FUJIFILM VisualSonics, Inc.	8
FUSE CDT	13
GAMPT mbh	5
Geegah Inc.	23
GW4SHM - Bundesanstalt für Materialforschung und -prüfung (BAM)	29
IMASONIC	26
Novosound	28
ONDA Corporation	23
Physik Instrumente (PI) S. r. l.	7
Polytec GmbH	19
Precision Acoustics Ltd	9
Silicon Austria Labs (SAL)	12
Sonic Concepts, Inc	4
STMicroelectronics	20
Telemed	14
TFT Corporation	2
The Phased Array Company	21
us4us Ltd.	6
Verasonics	1
Vermon	11

Plenary Speakers

Tuesday, October 11 14:00 – 15:00 CET

Room: Sala Grande (Cinema 1.2)

Waves in time dependent systems Sir John Pendry, Imperial College London

Sir John Pendry is a paradigm-breaking researcher in nano-optics who has demonstrated how wave properties hold the key to making objects invisible.

Waves interacting with static structures have long been studied in many settings: ultrasonics, acoustics, optics, radar and ocean waves to name a few. More recently interest has turned to time dependent systems in which the system parameters vary on a time scale comparable to the period of the waves or even faster. Of particular interest are systems where the material components do not physically move but whose parameters are phased in time from point to point. Because of the absence of physical motion, disturbances can be created that move with any desired velocity. In the case of optics this can mean faster than light and it can create several paradoxical phenomena including apparently (but not truly) acausal behaviour of signals. I shall discuss recent results from my own background in electromagnetism and optics, but will also point out the general nature of our results, particularly in acoustics, where realisation of some of the theoretical concepts can more readily be achieved than in optics.

Closing Session

Thursday, October 13 18:00 – 19:00 CET

Room: Sala Grande (Cinema 1.2)

The Closing Session will feature a commemoration of Paul Langevin's 150th Anniversary, to be presented by Francis Duck, recently retired Professor of the University of Bath and Tom Szabo, Professor of Biomedical Engineering at Boston University and author of the well-known book, Diagnostic Ultrasound Imaging: Inside Out.

This presentation will feature many firsts including piezoelectric transducers, and pulse echo systems for sonar and imaging, and it will be followed by the challenge awards, conference highlights, and a few words in closing.

Speakers: Francis Duck & Thomas L. Szabo

Invited Speakers

Anton Hofmeister STMicroelectronics Tuesday, October 11 – 17:30 (A4L-01)

PMUT – AN ENABLING TECHNOLOGY FOR THE AGE OF "ULTRASOUND DEMOCRATIZATION"

Francesco PradaCarlo Besta Neurological Institute
Wednesday, October 12 – 12:00 (B3L-07)

CLINICAL TALK: ULTRASOUND IN NEUROSURGERY: FROM IMAGING TO THERAPY

Giovanna Ferraioli

Medical School University of Pavia Wednesday, October 12 – 11:00 AM (B3L-07)

CLINICAL TALK: SHEAR WAVE ELASTOGRAPHY IN DIFFUSE LIVER DISEASE: ADVANTAGES AND LIMITATIONS

Giovanni Di Salvo

University Hospital of Padua Wednesday, October 12 – 11:30 (B3L-07)

CLINICAL TALK: MID- AND LONG-TERM ATRIO-VENTRICULAR MECHANICS IN CHILDREN AFTER RECOVERY FROM ASYMPTOMATIC OR MILDLY SYMPTOMATIC COVID-19

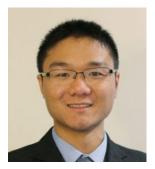
Hubert Krenner

WWU Münster Tuesday, October 11 – 8:30 (A1L-03)

INTEGRATED QUANTUM DOT OPTOMECHANICS

Jafar Saniie Illinois Institute of Technology Tuesday, October 11 – 8:30 (A1L-09)

MACHINE LEARNING AND MODELING OF ULTRASONIC SIGNALS FOR HIGH-FIDELITY DATA COMPRESSION


Johan Christensen Universidad Carlos III de Madrid Thursday, October 13 – 8:30 (C0L-03)

TOPOLOGICAL GALLERY OF NON-HERMITIAN WHISPERS

Jonathan Mamou Weill Cornell Medicine Thursday, October 13 – 11:00 AM (C2L-06)

EXPERIMENTAL AND COMPUTATIONAL METHODS FOR QUANTITATIVE ACOUSTIC MICROSCOPY AT ULTRA-FINE 2-MICROMETER RESOLUTION


Kailiang Chen 3PEAK Shanghai Tuesday, October 11 – 9:30 (A1L-01)

CIRCUIT DESIGN FOR PORTABLE ULTRASOUND PROBES

Karen Volke-Sepulveda National Autonomous University of Mexico Wednesday, October 12 – 17:30 (B6L-04)

A NEW LOOK TO AIRBORNE ACOUSTIC LEVITATION: TRAPPING AT THE PRESSURE ANTINODES

Massimo Mischi Eindhoven University of Technology Wednesday, October 12 – 14:00 (B5L-06)

QUANTITATIVE MULTIPARAMETRIC ULTRASOUND AND MACHINE LEARNING FOR PROSTATE CANCER LOCALIZATION

Matias Bargheer Universität Potsdam Wednesday, October 12 – 11:00 (B3L-03)

CONCEPTS FOR PICOSECOND ULTRASONICS WITH X-RAYS

Meaghan O'Reilly

University of Toronto Wednesday, October 12 – 8:30 (B1L-06)

NON-INVASIVE ULTRASOUND THERAPY IN THE SPINAL CORD

Omar Elmazria Université de Lorraine Thursday, October 13 – 14:00 (C3L-03)

MAGNETIC SURFACE ACOUSTIC WAVE SENSORS (MSAW)

Paul D. WilcoxUniversity of Bristol
Wednesday, October 12 – 14:30 (B5L-04)

APPLICATIONS OF DATA SCIENCE AND MACHINE LEARNING TO ULTRASONIC NDE

Pengfei SongBeckman Institute, University of Illinois Urbana-Champaign Tuesday, October 11 – 11:00 (A3L-07)

TECHNIQUES FOR FAST SUPER-RESOLUTION ULTRASOUND MICROVASCULAR IMAGING

Sylvia GebhardtFraunhofer-Institut für Keramische Technologien und Systeme IKTS Thursday, October 13 – 12:00 (C2L-05)

ADVANCED TECHNOLOGIES FOR THE MANUFACTURE OF CUSTOMIZED ULTRASONIC TRANSDUCERS

Tyrone PorterThe University of Texas at Austin
Tuesday, October 11 – 8:30 (A1L-04)

TARGETED NONTHERMAL TREATMENT OF BRAIN CANCER WITH FOCUSED ULTRASOUND AND ACOUSTIC CAVITATION

Victor Plessky
Tuesday, October 11 – 11:00 (A3L-02)
XBAR

Yoshifumi Saijo Tohoku University Thursday, October 13 – 8:30 (C0L-02)

OPTICAL/PHOTOACOUSTIC HYBRID MICROSCOPY FOR VISUALIZING MORPHOLOGY AND COMPOSITION OF CELLS

Short Courses

Short courses will take place on Monday, October 11. You must register for these separately from the main conference.

Morning Courses (8:30 – 12:30)		Room
Ultrafast Ultrasound Imaging: Basic Principles and	Mickael Tanter	Sala Volpi
Applications		(Casinò 1.2)
Artificial Intelligence in Ultrasound Imaging	Yonina Eldar and	Sala Perla
	Ruud van Sloun	(Casinò 1.1)
Essentials of Ultrasound Imaging: An Introduction	Tom Szabo and	Sala Mosaici 1
	Peter Kaczkowski	(Casinò 3.1)
Acoustic Wave Theory; from acoustic field equations	Koen van Dongen	Sala Mosaici 2
to imaging and full-waveform inversion		(Casinò 3.2)
Fundamentals of Physical Acoustic Waves	Ji Wang	Sala Mangano
		(Casinò 2.1)
Acoustic waves in nonlinear elastic media: An	Andreas Mayer	Sala Rossi Drago
introduction to basic principles and modelling		(Casinò 2.2)
Piezoelectric Fundamentals: Materials and	Sandy Cochran and	Sala Amici
Transducers	Susan Trolier- McKinstry	(Casinò 2.4)

Afternoon Courses (14:30 – 18:30)	Room	
Super-resolution Ultrasound	Olivier Couture and Vincent Hingot	Sala Volpi (Casinò 1.2)
Ultrasound Signal Processing with GPUs — Introduction to Parallel Programming	Marcin Lewandowski and Billy Yiu	Sala Perla (Casinò 1.1)
Therapeutic applications of focused ultrasound: From biophysic to clinical application	Meaghan O'Reilly and David Melodelima	Sala Mosaici 1 (Casinò 3.1)
Machine Learning & Signal Analysis for Ultrasonic Imaging, Nondestructive Testing and Communication Applications	Jafar Saniie and Erdal Oruklu	Sala Mosaici 2 (Casinò 3.2)
Acoustic Tweezing	Charles Courtney	Sala Mangano (Casinò 2.1)
Finite Element Modelling of Acoustic Resonators	Yook-Kong Yong	Sala Rossi Drago (Casinò 2.2)
Resonant Actuators for Photonic and Quantum Systems	Sunil Bhave	Sala Amici (Casinò 2.4)
Medical Ultrasound Transducers	David Mills and Scott Smith	Sala Martinelli (Casinò 2.3)

Student Events

Student Social

Monday, October 10, 19:00-20:00 CET (Sala Specchi - Casinò 1.3)

Students attending IUS are invited to participate in the STUDENT SOCIAL! Meet other students in a casual setting and network with future colleagues.

*Student Job-Seeking Skills

Wednesday, October 12, 7:30-8:30 CET (Sala Specchi - Casinò 1.3)

Students attending IUS are invited to participate in the Student Job Seeking Skills-Join us to evaluate your CV and practice job interviews with professionals that will help you prepare for an actual interview.

*Student-Professional Networking & Meet Student Reps

Wednesday, October 12, 13:00-14:00 CET (Sala Specchi - Casinò 1.3)

Students attending IUS are invited to participate in the STUDENT-PROFESSIONAL NETWORKING event—connect with leaders in ultrasonics from academia and industry! You will also have an opportunity to meet the student reps – ask them anything you want to know about the society or their personal experience!

*Student Pitch Competition

Thursday, October 13, 13:00-14:00 CET (Sala Specchi - Casinò 1.3)

Students attending the IUS have the opportunity to participate in the STUDENT PITCH COMPETITION! Deliver a live 60-second pitch on your research, supplemented by a single slide, and win a cash prize!

*Women in Engineering Lunch

Tuesday, October 11, 12:30 - 14:00 CET (Sala Specchi - Casinò 1.3)

The 2022 Women in Engineering lunch is focused on mentoring and the role of mentorship at different career stages. In-person participants will have an opportunity to engage in a structured speed mentoring round. Virtual participants will be paired to perform the same exercise either synchronously with the inperson event or at another time that is more convenient for the timezone(s) of each pairing.

LAUS Panel

Ultrasound Research in Latin America: Global Opportunities and Scientific Challenges

Monday, October 10, 2022, 18:30-19:30 CET (Sala Perla - Casinò 1.1)

The aim of this panel is to present and discuss scientific and technological challenges in Latin America, while promoting emerging opportunities in connection with the international ultrasound community.

Moderator: Matthew Urban (Mayo Clinic, USA)

Panelists: Karen Volke Sepulveda (Universidad Nacional Autonoma de Mexico, Mexico), Miguel Bernal (Verasonics SAS, Medellin, Colombia), Theo Pavan (Universidade de Sao Paulo, Brazil)

*Requires advance registration

*Ultrasound Localisation and TRacking Algorithms for Super Resolution (ULTRA-SR) Challenge

Super-resolution (SR) ultrasound imaging, particularly through localisation and tracking of microbubble contrast agents (also known as ultrasound localisation microscopy or ULM), is a new exciting area of research in biomedical ultrasound with potential impact in a wide range of biomedical applications. In recent years many different SR methodologies and algorithms have been proposed by different groups and their applications to biological systems, pre-clinical models and clinical patients are being explored.

The Challenge Session will take place on Wednesday, October 12 from 11:00 – 14:00 (Sala Mosaici 2 - Casinò 3.2).

Organizers

Mengxing Tang Imperial College London

Vassilis Sboros Heriot-Watt University

Marcelo Lerendegui Imperial College London George Papageorgiou Heriot-Watt University

Kai Riemer Imperial College London

Bingxue Wang Imperial College London

Advisory Committee

Jørgen Arendt Jensen Technical University of Denmark

Georg Schmitz Ruhr-University Bochum

Pengfei Song UIUC

Chris Dunsby Imperial College of London

Mickael Tanter INSERM

Kirsten Christensen-Jeffries King's College London

Sevan Harput London South Bank University

Ruud Van Sloun

Eindhoven University of Technology

Yonina Eldar Weizmann institute Jianwen Luo Tsinghua University

Olivier Couture Sorbonne University

Massimo Mischi

Eindhoven University of Technology

Paul Dayton NC State University

Jean Provost

Polytechnique Montréal

Stefanie Dencks

Ruhr-Universität Bochum

Shigao Chen Mayo Clinic

Mingxi Wan

Xian Jiaotong University

Meaghan O'Reilly

Sunnybrook Health Sciences Centre

*Requires advance registration

Industry Events

Wednesday, October 12

8:30 - 10:00 CET (Sala Amici - Casinò 2.4)

Professional Headshots

15:30 - 16:30 CET (Sala Specchi - Casinò 1.3)

Industry Tech Roundtables

Thursday, October 13

14:00 - 15:30 CET (Sala Amici - Casinò 2.4)

Professional Headshots

15:30-16:30 CET (Sala Specchi - Casinò 1.3)

Virtual/Hybrid Industry Workshops

Young Professional's Panels

Tuesday, October 11, 2022

15:30-16:30 CET (Sala Specchi - Casinò 1.3)

Young Professionals Panel I: Research Proposal for Grant Application

Discussion on how to write successful research proposals from the perspectives of funding agencies' program managers

Moderator: Karla P. Mercado-Shekhar, Assistant Professor, Biological Engineering, Indian Institute of Technology Gandhinagar, India

Panelist:

Dr. Behrouz Shabestari, Director of the National Technology Centers Program and Acting Director of the Division of Health Informatics Technologies at National Institute of Biomedical Imaging and Bioengineering (NIBIB)

Thursday, October 13, 2022

12:30-14:00 CET (Sala Mosaici 2 - Casinò 3.2)

*Young Professionals Panel II: New Faculty Experience and Tips

A lunch meet-up event for tenured faculty members to share their experience and tips with new faculty

Moderator: Haichong Zhang, Assistant Professor, Robotics and Biomedical Engineering, Worcester Polytechnic Institute

Panelists:

Alfred Yu, Professor in Biomedical Engineering at the University of Waterloo, Canada Ausrine Bartasyte, Professor at Institute FEMTO-ST at University of Franche-Comté, France Yoshifumi Saijo, Professor of the Graduate School of Biomedical Engineering and the Graduate School of Medicine at Tohoku University, Japan

*Requires advance registration

Program at a Glance

*Open to IEEE members only, must RSVP to UFFC-S Admin - uffc-admin@conferencecatalysts.com to attend.

^{**}Registration is required.

Venice Time	Monday, October 10th					
7:30						
8:00			tration del Casinò			
8:30						
9:00		**Short	Courses			
9:30		Palazzo d	del Casinò			
10:00						
10:15	*UltraCom Meeting	Coffee	e Break			
10:30	Sala Specchi - Casinò 1.3	1 st floor	⁻ Casinò			
10:45						
11:00		**Short	Courses			
11:30		Palazzo del Casinò				
12:00						
12:30						
13:00						
13:30						
13:45						
14:00						
14:30			•			
15:00		**Short Courses Palazzo del Casinò				
15:30						
16:00	*AdCom Meeting					
16:15	Sala Specchi - Casinò 1.3	Coffee	e Break			
16:30			Casinò			
16:45						
17:00		**Short	Courses			
17:30			del Casinò			
18:00						
18:30						
18:45	LAUC Danal					
19:00	LAUS Panel Sala Perla - Casinò 1.1		**Student Social			
19:30	Guia i Giia - GasiiiG I.I		Sala Specchi - Casinò 1.3			
20:00						

Venice Time	Tuesday, October 11th					
7:30		October 11til				
8:00						
8:30						
9:00		Oral Sessions				
9:30		Oral Goddiono				
10:00			Fujifilm Seminar			
	Poster Sessions, Exhi	bits & Coffee Break	Sala Mosaici 1 - Casinò			
10:15	Sala Laguna - Pal	azzo del Casinò	3.1			
10:30	Palazzo de	l Cinema	Verasonics Seminar			
10:45			Sala Welles - Casinò Mez.1			
11:00			IVIGZ. I			
11:30	Oral Ses	SSIONS				
12:00						
12:30						
13:00	**WIE Lunch					
13:30	Sala Specchi - Casinò 1.3					
13:45						
14:00	Oper	ning, Keynote & UFFC Awai	rds			
14:30	Sala Grande - Cinema 1.2					
15:00	D					
15:30	Poster Sessions, Exhbits & Coffee Break	Young Professionals	Cephasonics Seminar			
16:00	Sala Laguna - Palazzo del	Panel I	Sala Welles - Casinò			
16:15	Casinò Palazzo del Cinema	Casinò Sala Speccrii - Casino				
16:30						
16:45		Oral Sessions				
17:00		0141 003310113				
17:30						
18:00		Paper Awards/Utrasonics A	wards			
18:30		Sala Grande - Cinema 1.2				
18:45						
19:00						
19:30						
20:00		Welcome Reception				
21:00		Palazzo del Cinema				
21:30						

Venice Time	Wednesday, October 12th				
7:30	**Student Job Seeking Skills & Industry Mock Interviews/Breakfast				
8:00		Sala Specchi - Casinò 1.3	3		
8:30					
9:00		Oral Sessions			
9:30					
10:00	Dooto	" Casaiana Evhibita 9 Caffe	an Drank		
10:15		r Sessions, Exhibits & Coffe ala Laguna - Palazzo del Ca			
10:30	.	Palazzo del Cinema			
10:45		T			
11:00	Oral Sessions				
11:30	(Including Clinical	**Ultra-SR Challenge			
12:00	Session)	Session			
12:30		Sala Mosaici 2 - Casinò 3.2	T LICEC Editorial Board		
13:00	**Student Prof.	3.2	T-UFFC Editorial Board Retreat (Invitation Only)		
13:30	Networking & Meet Reps/Lunch		Sala Amici - Casinò 2.4		
	Sala Specchi - Casinò				
13:45	1.3				
14:00					
14:30	Oral Se	essions			
15:00					
15:30		Poster Sessions, Exhibits & Coffee Break Sala Laguna – Palazzo del Casinò			
16:00	Sala Laguna – Pa Palazzo d	Industry Tech Roundtables Sala Specchi – Casinò 1.3			
16:15	r alazzo u		·		
16:30					
16:45		Oral Sessions			
17:00					
17:30					
18:00					
18:30					
18:45					
19:00					
19:30		Conference Dinner			
20:00		Hotel Excelsior			
21:00	.13.3. 2.00.00				
21:30					

Venice Time	Thursday, October 13 th					
7:15	53333					
7:30	2023 Technical Program Committee Meeting (Invitation Only)					
8:00	Sala Specchi – Casinò 1.3					
8:15						
8:30						
9:00	Oral Ses	ssions				
9:30						
10:00		Fujifilm Seminar				
10:15	Poster Sessions, Exhibits & Coffee Break Sala Laguna - Palazzo del Casinò	Sala Mosaici 1 - Casinò 3.1				
10:30	Palazzo del Cinema					
10:45						
11:00						
11:30	Oral Sessions					
12:00						
12:30						
13:00	**Ctudent Ditale Commetition//ale	**Young Professional's Panel II & Lunch				
13:30	**Student Pitch Competition/Lunch Sala Specchi - Casinò 1.3	Sala Mosaici 2 - Casinò 3.2				
13:45						
14:00						
14:30	Oral Ses	ssions				
15:00						
15:30	Poster Sessions, Exhibits & Coffee Break	Virtual/Hybrid Industry Workshops				
16:00	Sala Laguna - Palazzo del Casinò	Sala Specchi - Casinò 1.3				
16:15	Palazzo del Cinema					
16:30						
16:45	Oral Ses	ssions				
17:00	Oral Ses	3010110				
17:30						
18:00	Commemorating Paul Langevin's 150th Anniversary					
18:30		Challenge Awards, Closing & Highlights Sala Grande - Cinema 1.2				
18:45	21.1.2					

Tuesday, October 11: Lecture Overview

Time	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena	Grande / Cinema 1.2	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1
Tuesday Oct 11th, 2022 08:30-10:00	TIS - Integrated Electronics for Ultrasound Imaging	ASD - SAW Devices I Chr: Shogo Inoue, Karl	A1L-03 PGP - General Physical Acoustics I Chr: Andreas Mayer, Jan Brown	MTH - Cavitation-based Therapy Chr: Mathieu Pernot, Timothy	MPA - Photoacoustic Imaging I	A1L-06 MBB - Advanced Beamforming I Chr: Giulia Matrone	Abdominal Elastography Chr: Caterina Gallippi, Guy	A1L-08 MIS - Deep Learning for Image Segmentation Chr: Jean Provost, Lasse Lovstakken	A1L-09 NSP – Signal Processing Chr: Jafar Saniie, Joel Harley
Tuesday Oct 11th, 2022 11:00-12:30	TTT - Transducers for Neurostimulatio	ABD - BAW Devices I Chr: Amelie Hagelauer	A3L-03 PAT - Acoustic Tweezers and Particle Manipulation I Chr: Charles Courtney	MTN - Theranostics Chr: Helen Mulvana	MSD - Transducers, Methods, and Circuits Chr: David Cowell	Characterization - Applications in the Abdomen I	Resolution Ultrasound I	Reconstruction	A3L-09 NPA – Photoacoustics Chr: <i>TBA</i>
Tuesday Oct 11th, 2022	Chr: Susan Trolier-McKinstry, Alessandro Stuart Savoia	NTC – Transducers and NEH – Energy	A4L-03 PNL - Nonlinear Physical Acoustics I Chr: Yook-Kong Yong, Mihir Patel	Neuromodulatio n and Blood	MBF - Blood Flow Imaging I Chr: Damien Garcia	Imaging Chr: Hervé	Elastography in Oncology	A4L-08 MIM - Artificial Intelligence for Imaging I Chr: Adrian Basarab, Libertario Demi	

Wednesday, October 12: Lecture Overview

Time	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena	Grande / Cinema 1.2	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1
Wednesday Oct 12th, 2022	B1L-01 TMI - Flexible Transducers and High Frequency Arrays Chr: Franck Levassort, Sylvia Gebhardt	B1L-02 MBF - Vector Flow Imaging I Chr: Lasse Lovstakken, Solveig Fadnes	B1L-03 ABA - BAW Applications Chr: Amelie Hagelauer, Omar Elmazria	Imaging and	MSR - Super Resolution	B1L-06 MTH - Drug Delivery and Bioeffects Chr: Klazina Kooiman	B1L-07 MEL - Muscle Elastography Chr: Jean Luc Gennisson, Matthew Urban	B1L-08 MIS - Image Enhancement I Chr: Denis Kouamé, Brett Byram	B1L-09 MBB - Advanced Beamforming II Chr: Wei-Ning Lee
	B3L-01 TMU - CMUT Chr: Omer Oralkan, Dominique Certon	B3L-02 MSD - Systems and Devices Chr: Ralf Seip, Jonathan Mamou	B3L-03 POA - Opto- Acoustics Chr: David Feld	Imaging and	B3L-05 Ultra-SR Challenge Finalists Chr: Vassilis Sboros, Mengxing Tang	B3L-06 MTC - Tissue Characterization - Cardiovascular and Cardiopulmonary I Chr: Emilie Franceschini, Guy Cloutier	B3L-07 Clinical Session Chr: Ton Van Der Steen, Damien Garcia	B3L-08 MPA - Photoacoustic imaging II Chr: Stuart Foster	B3L-09 MBB - Imaging Methods and Quality Assessment Chr: Barbara Nicolas
12:30 - 13:45									
Wednesday Oct 12th, 2022 14:00-15:30			B5L-03 PMI - Modelling and Inversion I Chr: Koen van Dongen, Anthony Mulholland	B5L-04 NDE – General NDE Methods I Chr: Paul Wilcox	Brain-Barrier Opening Chr: Kullervo	B5L-06 MTC - Ultrasound Methods for Characterizing Cancer and Monitoring Therapy I Chr: Michael Kolios, Kenneth Hoyt	B5L-07 MIM - Cardiovascular Imaging Chr: Richard Lopata, Wei-Ning Lee	B5L-08 MIS - Functional and Interventional Chr: Brooks Lindsey, Stanislav Emelianov	
Wednesday Oct 12th, 2022 16:30-18:00			B6L-03 AMA - Materials for Acoustic Wave Devices I Chr: Ausrine Bartasyte, Marc Solal	B6L-04 NWP - Wave Propagation and NDE - General NDE II Chr: TBA	B6L-05 MTN - Image Guidance Chr: Zhen Xu, Virginie Papadopolou	B6L-06 MBB - Image Correction I Chr: Jeremy Dahl, Svetoslav Nikolov	B6L-07 MSR - Super Resolution Ultrasound III Chr: Georg Schmitz	B6L-08 MCA - Drug Delivery and Cavitation Chr: Mike Averkiou, Ayache Bouakaz	

Thursday, October 13: Lecture Overview

Time	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena	Grande / Cinema 1.2	Perla / Casinò 1.1
Thursday Oct 13th, 2022 08:30-10:00	COL-01 MCA - Monodisperse Microbubbles, Targeted Microbubbles, and Bubble Imaging Chr: Klazina Kooiman	MPA - Photoacoustic	PPN - Phononics Chr: Andreas Mayer, Jan Brown	NMC – Material and Defect Characterization I	TMI - Design and Fabrication of	C0L-06 MBB - Image Correction II Chr: Brett Byram	Imaging Chr: Gianmarco	COL-08 MTH - Therapy Devices Chr: Cyril Lafon, Kenneth Bader
Thursday Oct 13th, 2022 11:00-12:30	C2L-01 MBF - Contrast- free Microvascular Imaging I Chr: Pengfei Song, Brett Byram	MSR - Super Resolution	Andreas Mayer	C2L-04 NMC – Material and Defect Characterization II and NPC – Process Control and Industrial Chr: TBA	TPF - Piezoelectric Transducer Materials and Fabrication Chr: Stefan Rupitsch	C2L-06 MTC - Ultrasound Tissue Characterization Measurement Techniques Chr: Jeffrey Ketterling, Massimo Mischi	Applications and	C2L-08 MIS - Imaging Chr: Gregg Trahey, Nicholas Bottenus
Thursday Oct 13th, 2022 14:00-15:30	and Multimodal Transducers, and	NSH – Structural Health Monitoring and NAS -	Sensors	Neuromodulation Chr: Hairong Zheng, Thomas Deffieux	MSD - High Frame Rate, Ultrafast, Imaging Chr: Steven Freear,	C3L-06 MEL - Cardiac Elastography Chr: Annette Caenen, Richard Lopata		C3L-08 MIS - Motion and Flow Estimation Chr: Olivier Couture, Chris De Korte
Thursday Oct 13th, 2022 16:30-18:00	Transducers Chr: Koko Lam	NAF - Acoustic Microfluidics, NUA		MBE - Therapy and Dosimetry Chr: Alfred Yu	Change Agents and Microbubbles Chr: Paul Dayton, Michael Kolios	C4L-06 MTC - Ultrasound Estimation of Sound Speed and Attenuation Chr: Tomy Varghese, James Wiskin	Elastography Chr: Chris De Korte, Hideyuki Hasegawa	C4L-08 MIM - New Imaging Techniques I Chr: Brooks Lindsey, Jeremy Dahl

Tuesday, October 11: Student Poster Competition

Students should present during the morning and afternoon poster sessions, from 10:00 AM – 11:00 AM and 3:30 PM – 4:30 PM Venice Time in Sala Laguna (Casinó Level 3). These posters will be available October 11 – 13. In addition to the poster presentation for the student paper competition, the papers are presented in lectures or posters in the regular program (see time slots below).

SPC1	SPC2	SPC3
1340: Detecting the Buildup of Kidney Fibrosis Using H-	1629: Focused-Ultrasound blood-Brain Barrier Opening	2084: Whole-Brain Vascular Imaging for Minimally
Scan	Promotes neuroprotective microglia	Invasive Neurosurgery
Jihye Baek	Alina Kline-Schoder	Anatole Jimenez
A3L-06 - 10/11/2022 11:00	A4L-04 - 10/11/2022 16:30	C2L-01 - 10/13/2022 11:45
SPC4	SPC5	SPC6
2054: Subspectrum Doppler Characteristics of the	2058: Miniaturized Gold nanochains enhanced	2297: A Novel 3D Row Column Imaging Technique
Functional Ultrasound (fUS)-Signal	Photoacoustic microscopy, and Optical Coherence	Demonstrated on a 20 MHz Electrostrictive Array
Sadaf Soloukey	Tomography Ocular Molecular Imaging	Nicholas Campbell
B5L-08 - 10/12/2022 14:45	Van Phuc Nguyen	C3L-05 - 10/13/2022 14:00
	COL-02 - 10/13/2022 9:00	
SPC7	SPC8	SPC9
1451: Ultrasound Matrix Beamforming: Object Imaging in	1684: Ultrathin, High Sensitivity Polymer-Based	1245: Model Compression and FPGA Implementation of
Strongly Scattering Media	Capacitive Micromachined Transducers (PolyCMUTs) for	an Ultrasonic Flaw Detection Algorithm Based on Meta
Arthur Le Ber	Acoustic Emission Sensing in Fiber Reinforced Polymers	Learning
A1L-09 - 10/11/2022 9:15	Jonas Welsch	Yu Yuan
	C3L-02 - 10/13/2022 14:00	B5L-04 - 10/12/2022 14:15
SPC10	SPC11	SPC12
1083: Non-Reciprocity Within Piezoelectric	1922: A Multifunctional Acoustic Tweezer for Structural	1900: Sputter Epitaxial (10-12) LiNbO3 Film / (1120) Azo /
Micromechanical Resonator Chains	Constructing Heterogenous Assembloids	(10-12) Al2O3 Shear Mode Thin Film Resonators
Jianing Zhao	Zeping Gao	Shinya Kudo
B2P-28 - W19.1 (Wednesday Poster)	A3L-03 - 10/11/2022 11:00	C2L-03 - 10/13/2022 11:00
SPC13	SPC14	SPC15
1350: Near-Spurious-Free Lithium Niobate Resonator for	1064: Manipulation of SAW Slowness Shape Using Low-	2289: Examination of Phonon Dissipation in 33 GHz
Piezoelectric Power Conversion with Q of 3500 and kt2 of	Cut LT/Quartz Structure for Transverse Resonance	Overmoded Bulk Acoustic Resonators
45%	Suppression Without k2 Deterioration	Zachary Schaffer
Kristi Nguyen	Yiwen He C4L-03 - 10/13/2022 17:15	B1L-03 - 10/12/2022 8:30
B2P-32 - W23.2 (Wednesday Poster) SPC16	SPC17	SPC18
1769: Fabrication and Characterization of FlexCMUT, a	1640: Non-Invasive 2D array-Based Ultrasound Retinal	1087: A Wireless Imaging System-on-a-Chip with
Flexible Polymer-Based Ultrasound Array for Conformal	Prosthesis and its frequency-Dependent Efficiency	Beamforming for Phased-Array Ultrasound
Imaging	Gengxi Lu	Ahmad Rezvanitabar
Amirhossein Omidvar	A3L-01 - 10/11/2022 11:00	A1L-01 - 10/11/2022 8:30
B1L-01 - 10/12/2022 9:00	AOL-01 - 10/11/2022 11.00	A1L-01 - 10/11/2022 0.00
DIL-01 - 10/12/2022 9.00		

Tuesday, October 11: 8:30 AM – 10:00 AM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	A1L-01: TIS - Integrated Electronics for Ultrasound Imaging Chair(s): Levent Degertekin (Georgia Institute of Technology), Enrico Boni (University of Florence)	A1L-02: ASD - SAW Devices I Chair(s): Shogo Inoue (Qorvo, Inc.), Karl Wagner (Qualcomm / RF360 Europe GmbH)	A1L-03: PGP - General Physical Acoustics I Chair(s): Andreas Mayer (HS Offenburg - University of Applied Sciences, Gengenbach), Jan Brown (Jan Brown Consulting)
8:30	1087: A Wireless Imaging System-on-a-Chip with Beamforming for Phased-Array Ultrasound Ahmad Rezvanitabar, et al. Georgia Tech	1453: A Spurious Free SH-SAW Resonator Employing a Novel Multilayer Stack Ventsislav Yantchev, et al. Huawei	1015: (INVITED) Integrated Quantum Dot Optomechanics Hubert Krenner University of Münster
8:45	2447: Integrated System on a Chip for Guidewire IVUS Xitie Zhang, et al. Georgia Institute of Technology	1497: Quality Factor Degradation Due to the In-Plane Mis-Orientation in POI-SAW Resonators Jinbo Wu, et al. Shanghai Institute of Microsystem and Information Technology	
9:00	2300: Towards Integrated Microultrasound Systems Bartas Abaravicius, et al. The University of Glasgow	1884: Temperature Dependency of Rayleigh and Sezawa Modes for Novel ScAIN/Si SAW Resonators Alexandra Nicoloiu, et al. IMT-Bucharest	2379: Strain Imaging a Silicon Carbide A0 Mode Resonator with Spin Photoluminescence Boyang Jiang, et al. Purdue University
9:15	1824: A 4-Channel Fully Integrated Ultrasound Imaging Front-End Transceiver for 1-D PMUT Arrays Alessandro Stuart Savoia, et al. Roma Tre University	1269: Study of the LT/Quartz Bonded SAW Substrate for High Performance Filter Solution Rei Goto, et al. Skyworks Solutions, Inc.	1295: A High-Speed Observation System for Studies on the Mechanisms of Ultrasonic Atomization in a Drop-Chain Fountain Nobuki Kudo, et al. Hokkaido University
9:30	1003: (INVITED) Circuit Design for Portable Ultrasound Probes Kailiang Chen 3PEAK	1359: Using Crossed IDTs to Suppress Transverse Modes in SAW Resonators Based on Poi Substrate Yidan Yin, et al. Hefei University of Technology	1346: Tailored Acoustic Holograms with Phased Arrays Denys lablonskyi, et al. Electronics Research Lab., University of Helsinki
9:45		1933: Strain Engineering on Lithium Niobate Crystal Based SAW Resonators Through Ion Implantation Liping Zhang, et al. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences	2193: Identification of Critical Angles in Shear Mode Conversion-Based Transcranial Ultrasound via Leaky Guided Wave Analysis Matteo Mazzotti, et al. University of Colorado Boulder

Tuesday, October 11: 8:30 AM – 10:00 AM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	A1L-04: MTH - Cavitation-based therapy Chair(s): Mathieu Pernot (ESPCI Paris), Timothy Hall (University of Michigan)	A1L-05: MPA - Photoacoustic imaging I Chair(s): Yoshifumi Saijo (Tohoku University), Qian Cheng (Tongji University)	A1L-06: MBB - Advanced Beamforming I Chair(s): Giulia Matrone (University of Pavia)
8:30	2593: (INVITED) Targeted Nonthermal Treatment of Brain Cancer with Focused Ultrasound and Acoustic Cavitation Tyrone Porter University of Texas at Austin	1689: Preclinical Monitoring of Kidney Ischemia-Reperfusion Injury Using Motion-Corrected Photoacoustic Imaging and its Implications in Transplants Eno Hysi, et al. St. Michael's Hospital	2075: The Effect of Retrospective Transmit Focusing on Minimum Variance Beamforming Håvard Kjellmo Arnestad, et al. University of Oslo
8:45		2336: Ratiometric Photoacoustic Imaging of pH- Responsive Polyaniline-Coated Needle for Targeted Cancer Biopsy Ayoung Choe, et al. Georgia Institute of Technology	2449: A Strategy for Synthetic Aperture Sequence Design Using Numerical Optimization Jacob Spainhour, et al. University of Colorado Boulder
9:00	2237: Enhancing the Antitumor Effects of a Standard of Care Neoadjuvant Chemotherapy Regimen with Mechanical Ablation in an Orthotopic Murine Breast Cancer Model Sharshi Bulner, et al. Sunnybrook Research Institute	1610: In Vivo Demonstration of Cardiac-Gated Photoacoustic Ablation-Induced Necrotic Lesion Mapping Shang Gao, et al. Worcester Polytechnic Institute	1879: A Novel Euclidian-Weighted Spatio-Temporal Non-Linear Beamforming for Sparse Synthetic Aperture Ultrasound Imaging: Initial Results Anudeep Vayyeti, et al. IIT Madras
9:15	2456: A Novel Catheter-Based Ultrasound Device for Vascular Occlusions Jingjing Liu, et al. Sunnybrook research institute	1594: A Dual-Frequency Ultrasound and Photoacoustic Rigid Catheter for Intravascular Imaging of Coronary Atherosclerosis Antonio López-Marín, et al. Erasmus Medical Center	1292: Developing Real-Time Implementations of Non- Linear Beamformers for Enhanced Optical Ultrasound Imaging Fraser Watt, et al. University College London
9:30	1375: In Vitro Evaluation of Catheter-Directed Versus Intravenous Infusion of Nanodroplets in Cavitation-Enhanced Sonothrombolysis Jinwook Kim, et al. The University of North Carolina at Chapel Hill	2512: Noninvasive Quantitation of EGFR-Targeted PAtrace with Photoacoustic Imaging to Assess Treatment Response in a Preclinical Model of Breast Cancer Cayla Wood, et al. MD Anderson Cancer Center	2296: Lagrangian Beamforming for High Contrast Echocardiography at High Frame Rate Jonathan Porée, et al. Polytechnique Montréal
9:45	1482: Histotripsy Monitoring by Combined Passive and Active Mapping of Cavitation Based on Double-Stage Delay Multiply and Sum Beamforming Shukuan Lu, et al. Xi'an Jiaotong University	1074: Deep Learning Assisted High-Resolution Photoacoustic Imaging of Chemical Components in Cancellous Bone Wenyi Xu, et al. Tongji University	2525: Frequency-Domain Beamforming Without Interpolation Using the Chirp Scaling Algorithm Louise Zhuang, et al. Stanford University

Tuesday, October 11: 8:30 AM – 10:00 AM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1
	A1L-07: MEL - Abdominal Elastography Chair(s): Caterina Gallippi (University of North Carolina), Guy Cloutier (University of Montreal)	A1L-08: MIS - Deep learning for Image Segmentation Chair(s): Jean Provost (Polytechnique Montreal), Lasse Lovstakken (Norwegian University of Science and Technology)	A1L-09: NSP – Signal Processing Chair(s): Jafar Saniie (Illinois Institute of Technology, USA), Joel Harley (University of Florida, USA)
8:30	2022: Multiparametric In Vivo Shear Wave Viscoelastography for Liver Cancer Assessment: Preliminary Results Sathiyamoorthy Selladurai, et al. University of Montreal Hospital	1968: Ultrasound and Deep Learning for Automated Maturation Prediction of Atlantic Salmon Yasin Yari, et al. Norwegian University of Science and Technology	2331: (INVITED) Machine Learning and Modeling of Ultrasonic Signals for High-Fidelity Data Compression Jafar Saniie Illinois Institute of Technology
8:45	1677: Multifrequency Liver Shear Wave Absolute Vibro- Elastography with an xMATRIX Array – 2D vs. 3D Comparison Study Qi Zeng, et al. The University of British Columbia	1992: An Automatic Ultrasonic Segmentation Method by Two-Stage Semi-Supervised Learning Strategy Fei Dai, et al. Fudan University	
9:00	2527: Quantitative Estimation of Shear Elastic Heterogeneity and Anisotropy in Excised Canine Kidney Using Double-Profile Intersection (DoPlo) Ultrasound Keita Yokoyama, et al. University of North Carolina at Chapel Hill and North Carolina State University	1039: Segmenting the Carotid-Artery Wall in Ultrasound Image Sequences with a Dual-Resolution U-Net Nolann Lainé, et al. CREATIS	1114: Towards Computational Super-Resolution Ultrasonic Array Imaging of Material Defects via Hierarchical Multi-Scale Deep Learning Yongchao Yang, et al. Michigan Technological University
9:15	1616: Renal Allograft Interstitial Inflammation Prediction Using Shear Wave Two-Dimensional Fourier Transform k-Space Trained Convolutional Neural Networks Luiz Vasconcelos, et al. Mayo Clinic	1540: Efficient Unet with Compound Loss Function for Breast Ultrasound Lesions Segmentation Dan Xiao, et al. Xi 'an Jiaotong University	1451: Ultrasound Matrix Beamforming: Object Imaging in Strongly Scattering Media Arthur Le Ber, et al. Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
9:30	1073: Phase Velocity Estimation in Renal Transplants Over Extended Frequency Band Piotr Kijanka, et al. AGH University of Science and Technology	2012: Exploiting Temporal Information in Echocardiography for Improved Image Segmentation Jieyu Hu, et al. Norwegian University of Science and Technology	1234: FPGA Based High Speed Through Tissue Ultrasound Communication Enabled High-Definition Video Streaming Zhengchang Kou, et al. University of Illinois Urbana-Champaign
9:45	2352: In Vivo VisR Measurements of Viscoelasticity and Viscoelastic Anisotropy in Human Allografted Kidneys Differentiate Interstitial Fibrosis and Graft Rejection Keita Yokoyama, et al. University of North Carolina at Chapel Hill and North Carolina State University	1091: Automatically Scoring Lung Ultrasound Videos of COVID-19 and Post-COVID-19 Patients Federico Mento, et al. Department of Information Engineering and Computer Science, University of Trento	

Tuesday, October 11: 11:00 AM – 12:30 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	A3L-01: TTT - Transducers for Neurostimulation and Drug Delivery Chair(s): Christine Démoré (University of Toronto), Sandy Cochran (University of Glasgow)	A3L-02: ABD - BAW Devices I Chair(s): Amelie Hagelauer (Fraunhofer EMFT, Technical University of Munich)	A3L-03: PAT - Acoustic Tweezers and Particle Manipulation I Chair(s): Charles Courtney (University of Bath, UK)
11:00	1640: Non-Invasive 2D Array-Based Ultrasound Retinal Prosthesis and its Frequency-Dependent Efficiency Gengxi Lu, et al. University of Southern California	1004: (INVITED) XBAR Victor Plessky Retired Professor	1922: A Multifunctional Acoustic Tweezer for Structural Constructing Heterogenous Assembloids Zeping Gao, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
11:15	1305: Piezoelectric Ultrasound Energy–Harvesting Device for Deep Brain Stimulation and Analgesia Applications Tao Zhang, et al. Huazhong University of Science and Technology		2471: Acoustic Tweezing Cytometry for Directed Stem Cell Differentiation Cheri Deng, et al. University of Michigan
11:30	2227: Ultrasonocoverslip: Optimized Acoustic Coverslip Platform for Investigating Glia-Neuron Interaction Upon Ultrasound Stimulations Keunhyung Lee, et al. Sungkyunkwan University	1132: LiNbO3 Film Bulk Acoustic Resonator for n79 Band Marie Bousquet, et al. CEA-LETI	1207: Position and Orientation Control of Complex- Shaped Sample in Acoustic Levitator Felix Sundblad, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki
11:45	1600: A Transducer Array System for Drug Delivery Using Short Pulses Zheng Jiang, et al. Imperial College London	2118: A Procedure to Correct for Anomalies in Estimating the Time Averaged Stored Energy of a BAW Resonator from its S11 Parameters Renfeng Jin, et al. Skyworks Inc	1832: In-Vivo Acoustic Manipulation of Genetically Engineered Bacterial Microswimmers Ye Yang, et al. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
12:00	2265: A Dual-Core Ultrasound Probe for Image-Guided Sonoporation: Application to Anti-Cancer Immunotherapy Mathieu Legros, et al. Vermon SA	1362: 2D Scalar Wave Model for Fast Analysis of Apodized BAW Devices Ting Wu, et al. UESTC	1692: Rotating Acoustic Drills by the Interference of Detuned Vortices Noé Jiménez, et al. Universitat Politècnica de València
12:15	2419: Intracorporeal Sonoporation-Induced Drug/Gene Delivery Using a Catheter Ultrasound Transducer Mengyue Chen, et al. North Carolina State University	2219: Analyzing the 2nd Harmonic Emissions of a BAW Resonator Undergoing Lateral Mode Excitation David Molinero, et al. Skyworks Inc	1263: Laser-Guided Acoustic Tweezers Qing Wang, et al. Fudan University, China

Tuesday, October 11: 11:00 AM – 12:30 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	A3L-04: MTN - Theranostics Chair(s): Helen Mulvana (University of Strathclyde)	A3L-05: MSD - Transducers, Methods, and Circuits Chair(s): David Cowell (University of Leeds)	A3L-06: MTC - Tissue Characterization - Applications in the Abdomen I Chair(s): Ivan Rosado-Mendez (University of Wisconsin), Kibo Nam (Thomas Jefferson University)
11:00	1264: Functional Ultrasound Imaging of Subanesthetic Ketamine in Awake Rats Reveals Opioid Receptor-Mediated Neural Activity Tommaso Di Ianni, et al. Stanford University	1235: Improved Localization and Identification of Radiological Clips Using Ultrasound Identification Jenna Cario, et al. University of Illinois Urbana-Champaign	1340: Detecting the Buildup of Kidney Fibrosis Using H-Scan Jihye Baek, et al. University of Rochester
11:15	2516: Enhancing Cancer Immunotherapy via Magnetic Delivery of Nanoparticle-Engineered T Cells and Trimodal Image Guidance Kelsey Kubelick, et al. Georgia Institute of Technology	1528: Frequency-Controlled Longitudinal and Flexural Modes in an Ultrasonic Needle for Biopsy Yohann Le Bourlout, et al. Aalto University	1351: Robust Principal Component Analysis with Wavelet-Based Sparsity Promotion to Mitigate Reverberation Clutters for Ultrasound Attenuation Estimation U-Wai Lok, et al. Mayo Clinic
11:30	1055: Miniaturised Dual-Modality All-Optical Laser Interstitial Thermal Therapy (LITT) and Ultrasound Imaging Shaoyan Zhang, et al. University College London	1650: An Adaptive Acoustic Output Selection Method Feasible for Implementation on Existing Clinical Systems Matthew Huber, et al. Duke University	1333: Burr Distribution Describes Ultrasound Speckle Statistics of Soft Biological Tissues Sedigheh Poul, et al. University of Rochester
11:45	2442: Development of a Pre-Clinical Sparse Hemispherical Array for Microbubble-Mediated Ultrasound Brain Therapy with Acoustic Monitoring and Control Yi Lin, et al. University of Toronto	1768: Low-Power Full-Duplex Transmit-Receive Circuits for Wearable Ultrasound Transducers Abhishek Sahoo, et al. University of Minnesota, Twin Cities	1710: Grading Diagnosis of Hepatic Inflammation, Steatosis, and Fibrosis Using Multiparametric Quantitative Ultrasound and Artificial Neural Networks Yuanyuan Wang, et al. Tsinghua University
12:00	1438: Dual-Frequency Focused Ultrasound Enhanced Theranostics with Multifunctional Perfluoropentane Nanoparticle Junjie Chen, et al. Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong Univ	1501: LIPUS Stimulation of the Knee Cartilage: In- Vitro-to-In-Vivo Translation Paolo Cabras, et al. 'Image Guided Therapy' and 'ICube, Université de Strasbourg, CNRS, UMR 7357'	1767: Calibrated 2D Ultrasound Image Analysis for Staging Hepatic Steatosis with Liver Biopsy, Analyzed Qualitatively and Quantitatively, as Reference Standard Gert Weijers, et al. Radboudumc
12:15	1986: Phase-Changing Nanodroplets for Combination Immunotherapy and Chemotherapy Catalina-Paula Spatarelu, et al. Dartmouth College	1764: Acoustic Stack for Large Row-Column CMUT Arrays Kasper Fløng Pedersen, et al. Technical University of Denmark	2011: Ultrasonic Texture Analysis with Various Beamforming Sound Speeds in Characterization of Non-Alcoholic Fatty Liver Disease Kibo Nam, et al. Thomas Jefferson University

Tuesday, October 11: 11:00 AM – 12:30 PM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1
	A3L-07: MSR - Super Resolution Ultrasound I Chair(s): Mengxing Tang (Imperial College London), Jørgen Jensen (Technical University Denmark)	A3L-08: MIS - 3D Image Reconstruction Chair(s): Jean Luc Gennisson (Universite Paris-Saclay), Adrian Basarab (University of Toulouse)	A3L-09: NPA – Photoacoustics Chair(s): TBA
11:00	1005: (INVITED) Techniques for Fast Super- Resolution Ultrasound Microvascular Imaging Pengfei Song University of Illinois Urbana-Champaign	2000: Insonification Angle-Based Ultrasound Volume Reconstruction for Spine Intervention Baichuan Jiang, et al. Johns Hopkins University	2276: Micro-Ultrasound Photoacoustic Imaging of Prostate Cancer: An In Vivo Demonstration Nidhi Singh, et al. Sunnybrook Health Sciences Center, University of Toronto
11:15		2299: 3-D Contrast Enhanced Ultrasound Imaging of an In Vivo Chicken Embryo with a Sparse Array and Deep Learning Based Adaptive Beamforming Boudewine Ossenkoppele, et al. Delft University of Technology	1072: Receive Characterization of Ultrasound Transducers for Photoacoustic Imaging Using a Broadband Laser Generated Ultrasound Source Aoife Ivory, et al. National Physical Laboratory
11:30	1998: Clinical Repeatability of Super-Resolution Ultrasound – A Preliminary Study Megan Morris, et al. Imperial College London	2115: Reconstructing Human Cerebral Vasculature in 3D with High Frame Rate, Freehand 2D Doppler Ultrasound Using Optical Tracking Luuk Verhoef, et al. Erasmus MC	1197: Compact Optical-Resolution Photoacoustic Microscopy Using Transparent Ultrasound Transducer Riqiang Lin, et al. The Hong Kong Polytechnic University
11:45	2081: Visualizing the Angiogenesis of Glioblastoma in Mice Using Fully Volumetric Ultrasound Localization Microscopy on a 1024-Channel Ultrasound System Jacob McCall, et al. UNC Chapel Hill	1959: 3D Geometry Assessment of Peripheral Arteries Using Multi-Perspective Freehand 2D Ultrasound Milan Gillissen, et al. University of Technology Eindhoven	1462: Directivity of Photoacoustically Generated Ultrasound from Thin Tube Embedded in Soft Phantom Kun Wang, et al. Tokyo Institute of Technology
12:00	1915: Endoscopic Ultrasound Localization Microscopy Imaging for Evaluation of the Colorectal Tumor Microvasculature Shuang Lei, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China	2035: 3D Functional Ultrasound Using a Continuously Moving Linear Stage Bastian Generowicz, et al. Department of Neuroscience, Erasmus MC	2009: Evaluation of Lateral and Axial Resolution of Pixel-Based Beamformers in Photoacoustic Tomography Using a Linear US Probe Irene Pi-Martín, et al. Universitat Politècnica de València (UPV)
12:15	1642: Passive Ultrasound Localization Microscopy of Radiation-Induced Nanodroplet Vaporization Events for Proton Range Verification Sophie Heymans, et al. KU Leuven campus KULAK		2416: Transparent 128×128 Tobe Arrays Based on Electrostrictive PMN-PT Mohammad Rahim Sobhani, et al. University of Alberta

Tuesday, October 11: 4:30 PM – 6:00 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	A4L-01: TMU - PMUT Chair(s): Susan Trolier-McKinstry (Pennsylvania State University), Alessandro Stuart Savoia (Roma Tre University)	A4L-02: NTC – Transducers and NEH – Energy Harvesting I Chair(s): Kui Yao (IMRE, ASTAR, Singapore), Kentaro Nakamura (Tokyo Institute of technology, Japan)	A4L-03: PNL - Nonlinear Physical Acoustics I Chair(s): Yook-Kong Yong (Rutgers University, U.S.A), Mihir Patel (MACOM)
16:30	1210: A 0.5 mm2 Pitch-Matched AIN PMUT-on-CMOS Ultrasound Imaging System Eyglis Ledesma, et al. Universitat Autónoma de Barcelona	1583: A Combination of Chirp Spread Spectrum and Frequency Hopping for Guided Waves-Based Digital Data Communication with Frequency Steerable Acoustic Transducers Federica Zonzini, et al. University of Bologna	1324: On the Importance of Local Nonlinear Interaction Between Two Cross-Propagating Plane-Waves Agisilaos Matalliotakis, et al. Department of Imaging Physics, Delft University of Technology
16:45	2557: Design and Fabrication of a PVDF - TrFE Based Piezoelectric Micromachined Ultrasonic Transducer with Acoustic Cavity Alp Timucin Toymus, et al. Koc University	1727: Ultrasonic Transducer Made of Flexible Piezoelectric PLLA Polymer for Shear Mode Ultrasonic Structural Health Monitoring Yasmin Mohamed Yousry, et al. Institute of Materials Research and Engineering, ASTAR	2049: Quantifying the Role of Transport by Acoustic Streaming in MHz Focused-Ultrasound-Based Surface Sampling Tom Sillanpää, et al. Electronics Research Lab., Dept. of Physics and Faculty of Pharmacy, University of Helsinki
17:00	2211: PMUT Phased Arrays for Neuromodulation Pannawit Tipsawat, et al. Pennsylvania State University	1353: Side-Shifted Dual PPM EMATs with Multiple Rows of Magnets and Reduced Lateral Gap by Flexible Printed Circuit Board Racetrack Coils Lucas Martinho, et al. PUC-Rio	1142: Experimental and Numerical Study of Rayleigh Streaming in Sessile Droplet Qi Wang, et al. Fudan University
17:15	2534: Sputtered PZT pMUT with Bias-Tunable Electromechanical Coupling Coefficient for Air-Coupled Ranging Applications Jihang Liu, et al. Institute of Microelectronics, Agency for Science, Technology and Research	1023: Ultrasound Energy Harvesting Through Contact Electrification Augmented by Ferroelectrics Sunghoon Hur, et al. Korea Institute of Science and Technology	2119: Intermodulation as a Tool for Characterization of Nonlinearity in SAW-Excited Mechanical Micro-Resonators Maciej Baranski, et al. CNRS/FEMTO-ST
17:30	2592: (INVITED) PMUT – An Enabling Technology for the Age of "Ultrasound Democratization" Anton Hofmeister STMicroelectronics	1792: Time-Efficient Low Power Time/Phase- Reversal Beamforming for the Tracking of Ultrasound Implantable Devices Marta Saccher, et al. Delft University of Technology	1289: Interaction of Surface Acoustic Wave and Localized Surface Plasmon Resonance for "Microlaboratory" Application Kohei Kasai, et al. Shizuoka University
17:45			1871: Theoretical and Numerical Investigation of the Luxembourg-Gorky Effect for Elastic Shear Horizontal Guided Waves Mariusz Osika, et al. AGH University of Science and Technology

Tuesday, October 11: 4:30 PM – 6:00 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	A4L-04: MBE - Neuromodulation and Blood Brain Barrier Opening Chair(s): Aiguo Han (University of Illinois), Pauline Muleki Seya (CNRS)	A4L-05: MBF - Blood flow imaging I Chair(s): Damien Garcia (CREATIS Insa Lyon)	A4L-06: MBB - 3D Imaging Chair(s): Hervé Liebgott (CREATIS Insa Lyon), Mathieu Pernot (ESPCI Paris)
16:30	1629: Focused-Ultrasound Blood-Brain Barrier Opening Promotes Neuroprotective Disease- Associated Microglia Alina Kline-Schoder, et al. Columbia University	1581: Local Pressure Estimation Using Elastography and Ultrasensitive Pulsed-Wave Doppler Lenin Chinchilla, et al. BioMaps	1803: Ultrasound Matrix Imaging: Compensation of Multiple Reflections and Axial Aberrations Elsa Giraudat, et al. Institut Langevin
16:45	1653: MR-Guided Focused Ultrasound-Mediated Blood-Brain Barrier Opening Is Not Affected by Magnetic Field Sheng-Kai Wu, et al. Sunnybrook Research Institute, Toronto, ON, Canada	2004: Automatic High Frame Rate Spectral Envelope Detection to Calculate Parameter Maps of Neonatal Brain Perfusion Anna Jorinde Kortenbout, et al. Erasmus MC	1814: Novel Row-Column Beamformer for Low Complexity Volumetric Imaging Lasse Thurmann Jørgensen, et al. Technical University of Denmark
17:00	2423: Evaluation of Imaging Parameters and Their Effect on Blood-Brain-Barrier Opening Hanjoo Lee, et al. University of North Carolina at Chapel Hill/NCSU	2016: Towards Real-Time Training of Physics- Informed Neural Networks for Doppler Ultrasound Haotian Guan, et al. The University of Hong Kong	1916: Automatic Probe Localization in Freehand Multi-Perspective Bistatic 3D Ultrasound Imaging Hein de Hoop, et al. Eindhoven University of Technology
17:15	1892: Piezo1 Mediates Ultrasonic Neuromodulation in Mouse Brain In Vivo Jiejun Zhu, et al. The Hong Kong Polytechnic University	2164: Alias-Free Color Doppler with Chirps Pierre Ecarlat, et al. CREATIS	2176: Specific Delay Multiply and Sum Beamforming for 2-D and 3-D Coherent Multi-Transducer Ultrasound Imaging Laura Peralta, et al. King's College London
17:30	1028: Nanoparticle-Enabled Ultrasonic Brain Stimulation in Freely Moving Mice Xuandi Hou, et al. The Hong Kong Polytechnic University	2261: Chirp-Based Velocity Estimation (ChiVE): A Novel Framework to Enhance Velocity Estimation Performance Using Wideband Transmissions Rebekah Maffett, et al. University of Waterloo	1409: Use of Adaptive Algorithms for 3D Passive Acoustic Mapping Audrey Sivadon, et al. LabTau, Univ Lyon, Inserm
17:45	2407: Calcium Signaling Spatiotemporal Dynamics Evoked by Focused Ultrasound (FUS) in an In-Vitro Human Neural Cell Model Tom Aubier, et al. LabTau, INSERM	2420: Concurrent ARFI Plaque Imaging and Wall Shear Stress Measurement in Human Carotid Artery, with Validation by Fluid Structure Interaction Models Keerthi Anand, et al. University of North Carolina, Chapel Hill and North Carolina State University	

Tuesday, October 11: 4:30 PM – 6:00 PM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	
	A4L-07: MEL - Elastography in Oncology Chair(s): Mark Palmeri (Duke University), Elisabeth Brusseau (University Lyon, INSA-Lyon)	A4L-08: MIM - Artificial Intelligence for Imaging I Chair(s): Adrian Basarab (University of Toulouse), Libertario Demi (University of Trento)	
16:30	1888: Preclinical Three-Dimensional Vibrational Shear Wave Ultrasound Elastography (3D-VSWE) for Non-Invasive Mapping of Tumour Biomechanical Properties In Vivo Vaideesh Parasaram, et al. The Institute of Cancer Research	1335: Breast Lesion Detection and Visualization Utilizing Artificial Intelligence and the H-Scan Jihye Baek, et al. University of Rochester	
16:45	1657: Surface Excitation of Focused Shear Wave Beams for Ultrasound Elastography of Soft Tissues Yu-Hsuan Chao, et al. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh	1601: Al-Based Fully Automatic Scanning-Guide Algorithm for the Diagnosis of Rotator Cuff Tear Using Ultrasound Imaging Kyungsu Lee, et al. DGIST	
17:00	1538: Shear Wave Elasticity Imaging Can Monitor Murine Colorectal Tumors' Response to Radiotherapy Reem Mislati, et al. University of Rochester	1308: Non-Invasive Quantification of Steatosis: A New Ultrasound Based Model to Predict Fatty Liver Content Laura De Rosa, et al. Department of Information Engineering and Computer Science, University of Trento, Italy	
17:15	1786: 3D Shear Wave Absolute Vibro-Elastography for Guided Prostate Biopsy: Phantom and In Vivo Liver Validation Tajwar Abrar Aleef, et al. University of British Columbia	1440: Tracking-Based Mitral Annular Plane Systolic Excursion (MAPSE) Measurement Using Deep Learning in B-Mode Ultrasound Erik Smistad, et al. Norwegian University of Science and Technology and SINTEF Medical Technology	
17:30	2226: Screening and Image-Guided Targeted Biopsy of Prostate Cancer Using 3D Acoustic Radiation Force Impulse (ARFI) Imaging Derek Chan, et al. Duke University	1828: Element Array Shape Estimation by Minimizing the Reconstructed Image Entropy: In Vivo Study Takumi Noda, et al. The University of Tokyo	
17:45	2386: Breast Lesion Diameter in VisR Imaging Differs Between Malignant and Benign Masses in Women Anna Phillips, et al. University of North Carolina at Chapel Hill	2486: Real-Time Reverberation Suppression in High BMI Subjects Using a 2D Permuted Convolutional Neural Network Leandra Brickson, et al. Stanford University	

A2P-10: MBB - Beamforming I Chair(s): Nicholas Bottenus (University of Colorado Boulder)		
Tu1.1 1133: Adaptive Time-Channel Beamforming for Time-of-Flight Correction Avner Shultzman, et al. The Weizmann Institute	Tu1.2 1470: Synthetic Aperture High Quality B-Mode Imaging with a Row-Column Array Compared to Linear Array Imaging Jørgen Arendt Jensen, et al. Center for Fast Ultrasound Imaging, Technical University of Denmark	Tu1.3 1484: A New Adaptive Imaging Technique Using Generalized Delay Multiply and Sum Factor Mahsa Sotoodeh Ziksari, et al. KU Leuven
Tu1.4 1535: Windowed Radon Transform and Constrained Singular Value Decomposition for Adaptive Beamforming in Ultrasound B-Mode Imaging Samuel Beuret, et al. École Polytechnique Fédérale de Lausanne, EPFL	Tu1.5 1547: Improving the Quality of Monostatic Synthetic-Aperture Ultrasound Imaging Through Deep-Learning-Based Beamforming Eleonora Toffali, et al. University of Pavia	Tu1.6 1587: Experimental Demonstration of the Coherent Use of Two Sparse Arrays for 3-D Imaging Laura Peralta, et al. King's College London
Tu1.7 1687: Coherence from Refocus Compared to Retrospective Transmit Beamforming Ole Marius Hoel Rindal, et al. University of Oslo	Tu1.8 1950: Application of Seismic Techniques to Ultrasound B-Mode Imaging Alessandro Ramalli, et al. Department of Information Engineering, University of Florence	Tu1.9 2117: Ultrasound Image Beamforming Optimization Using Generative Adversarial Networks Silvia Seoni, et al. Politecnico di Torino
Tu1.10 2142: p-Das Extended to Baseband Domain for Doppler Imaging Pierre Ecarlat, et al. CREATIS	Tu1.11 1447: Comparison of Phase-Screen and Geometry-Based Aberration Correction Techniques for Transcranial Ultrasound Imaging Moein Mozaffarzadeh, et al. Delft University of Technology	Tu1.12 1659: Field of View and Resolution Improvement in Coprime Sparse Synthetic Aperture Ultrasound Imaging Vahid AminNili, et al. Sharif University of Technology

A2P-11: MBE - Therapy Chair(s): Mingxi Wan (Xi'an Jiaotong University), Pauline Muleki Seya (CNRS)		
Tu2.1 1056: Shorter Intracellular Calcium Fluctuations in Re- Sonoporation of the Sonoporated Cells Jianmin Shi, et al. Shanghai Jiao Tong University Tu2.2 1066: Sonoporation Stimulates Short-Term Potentiation of Membrane Resealing in Neighboring Cells Jianmin Shi, et al. Shanghai Jiao Tong University Tu2.3 1506: Novel Tumor Synergetic Therapy Potentiates Antipolic PD-L1 Treatment for High-Performance Immunotherapy via Tornado-Inspired Focused Acoustic Vortex Pengying Wu, et al. Xi'an Jiaotong University		
Tu2.4 1578: Histotripsy Treatment Parameters Affect Immune Infiltration to Treated and Distant Tumors Reliza McGinnis, et al. University of Michigan	Tu2.5 1590: Shockwave Evolutions During Histotripsy Treatment in Ex-Vivo Tissue Scott Haskell, et al. University of Michigan	Tu2.6 1648: Evaluation of Bubble Nuclei in Polyacrylamide Hydrogels with Varying Elastic Moduli and Impurities Ferdousi Sabera Rawnaque, et al. The Pennsylvania State University

Tu2.7	Tu2.8	Tu2.9
1978: Focused Ultrasound Stimulation of Primary	2186: Low Intensity Pulsed Ultrasound and Piezoelectric	2235: Bioeffects of Photo-Mediated Ultrasound Therapy
Sensory Neurons	Nanoparticles Boost Cartilage Regeneration	on Release of Nitric Oxide and Prostacyclin from
Elena Brunet, et al.	Andrea Cafarelli, et al.	Chorioretinal Endothelial Cells
Aix-Marseille univ., CNRS, Institut de Biologie du	Scuola Superiore Sant'Anna	Madhumithra Subramanian Karthikesh, et al.
Développement de Marseille, UMR 7288, Turing Cent	·	Univeristy of Kansas
Tu2.10	Tu2.11	Tu2.12
2313: Effects of Histotripsy Parameters and Dose on Ex-	2376: Impact of Cavitation Regime on HL-60 Leukemia	2495: Cross-Algorithm Analysis of Cavitation Dose Using
Vivo Human Benign Prostatic Hyperplasia Tissue	Cell Survival Following Size-Controlled Microbubble-	a New Cavitation Metrology Platform
Yashwanth Nanda Kumar, et al.	Mediated Sonoporation	Yanyan Tran, et al.
University of Washington	Robyn Klassen, et al.	University of Waterloo
	University of Waterloo	·

A2P-12: MEL - Cardiovascular Elastography Chair(s): Sevan Harput (London South Bank University, UK)		
Tu3.1 1107: Resonance of Shear Wave Propagation in Blood Clots In Vitro Guillaume Bosio, et al. University of Montreal Hospital	Tu3.2 1196: In Vivo Estimation of Shear Modulus of Human Carotid Arteries Using Arterial Dispersion Ultrasound Vibrometry Tuhin Roy, et al. North Carolina State University	Tu3.3 1405: Changes in Early Myocardial Relaxation or Contraction Do Not Relate to Changes in Shear Wave Speed Induced by Valve Closure Stéphanie Bézy, et al. KU Leuven
Tu3.4 1408: Hemodynamic Loading and Intrinsic Cardiac Stiffness Affect Shear Wave Measurements: An In Silico Sensitivity Analysis Annette Caenen, et al. Ghent University	Tu3.5 1980: Detection of Both Flexural and Usual Pulse Waves in the Carotid Artery for Arterial Wall Elasticity Estimation Gabrielle Laloy-Borgna, et al. LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1	Tu3.6 2094: Cardiovascular Health Classification Using Arterial Dispersion Ultrasound Vibrometry Hadiya Harrigan, et al. Duke University
Tu3.7 2150: Three-Dimensional Spatiotemporal Coding for Myocardial Motion Estimation Xiaochuan Wu, et al. The University of Hong Kong	Tu3.8 2231: Myocardial Elastography for Evaluating the Evolution of Shear Strain and Strain Rate in Canine Myocardium After Myocardial Infarction Yik Tung Tracy Ling, et al. Columbia University	Tu3.9 2248: Robust Localized Stiffness Assessment by Combining Flow and Wall Motion in a 1-D Wave Propagation Model Paul Kemper, et al. Columbia University
Tu3.10 2307: Impact of Ventricular Geometrical Characteristics on Myocardial Stiffness Assessment Using Shear Wave Elastography in Healthy Children and Young Adult Aimen Malik, et al. SickKids, Translational Medicine	Tu3.11 2508: Characterization of Nonlinear Elasticity of the Carotid Artery Using Pulse Wave Imaging: A Feasibility Study in Hypertensive and Carotid Artery Disease Patients In Vivo Parth Gami, et al. Columbia University	Tu3.12 1579: Effect of Arterial Geometry on Wave-Based Stiffness Estimates Charles Capron, et al. Mayo Clinic

Tu3.13	Tu3.14	
2001: Multi-Perspective 4D Cardiac Strain Estimation	2492: A Theoretical Framework of Pulse Wave Imaging	
Marloes Sjoerdsma, et al.	on Plaque Characterization	
Eindhoven University of Technology	Cosima Liang, et al.	
	Columbia University	

A2P-13: MIM - Artificial Intelligence for Imaging II		
Chair(s): Georg Schmitz (Ruhr-Universität Bochum), Mark Palmeri (Duke University)		
Tu4.1	Tu4.2	Tu4.3
1063: Dual-Path Convolutional Neural Network for	1117: Deep Learning-Based Virtual Refocusing of Out-of-	1139: Knowledge Distillation for Mobile Quantitative
Chronic Kidney Disease Classification in Ultrasound	Plane Images for Ultrasound Computed Tomography	Ultrasound Imaging
Echography	Zhaohui Liu, et al.	Seokhwan Oh, et al.
Zhen-Yi Tang, et al.	Huazhong University of Science and Technology	KAIST
National Taiwan University of Science and Technology		
Tu4.4	Tu4.5	Tu4.6
1436: Flexible Element Array Geometry Estimation from	1461: Autonomous Recognition of Carotid Plaque in	1711: Detection of Spontaneous Echo Contrast with
Radio-Frequency Data Using Deep Learning	Ultrasound Images Using Deep Learning	Multi-Sequence CNN on Venous Ultrasound
Takumi Noda, et al.	Juntao Chang, et al.	Ouwen Huang, et al.
The University of Tokyo	Xi'an Jiaotong University	Duke University
Tu4.7	Tu4.8	Tu4.9
1990: Cardiac Event Detection in Echocardiography	2093: Cannula Localization Using Separate Plane Wave	1603: Vortical Spatial Attention-Based Deep Learning
Using Deep Learning and Triplane Recordings	Ultrasound Measurements and a Deep Neural Network	Model for 3D Ultrasound Image Classification and
Benjamin Strandli Fermann, et al.	Mariam Fouad, et al.	Segmentation
University of Oslo, GE Healthcare Vingmed Ultrasound	RUB	Kyungsu Lee, et al.
		DGIST
Tu4.10	Tu4.11	
2339: Enhance Motion Estimation by Training a Deep	2482: Automatic Left Ventricle Segmentation in the	
Learning Optical Flow Algorithm on a Hybrid Dataset	Presence of Near Field Clutter Using Machine Learning	
Andrea Pulido, et al.	and Contour Fitting	
KU Leuven	Min-Chieh Tsai, et al.	
	National Taiwan University	

A2P-14: MIS - Image Formation Chair(s): Giulia Matrone (University of Pavia)		
	Tu5.2 1011: Power Spectrum Equalized Passive Acoustic Mapping Chunqi Li, et al. School of Electronic and Electrical Engineering, University of Leeds	Tu5.3 1146: Increasing the Frame Rate of Echocardiography Images Based on a Novel Interpolation Technique Sajjad Afrakhteh, et al. University of Trento

Tu5.4 1459: Real-Time Echocardiography Guidance for Optimized Apical Standard Views David Pasdeloup, et al. Norwegian University of Science and Technology Tu5.7 2418: Binary and Random Inputs to Rapidly Identify Overfitting in Ultrasound Beamforming with Deep Learning Jiaxin Zhang, et al. Johns Hopkins University Tu5.10 1402: Data Reduction Technique Using Sub-Nyquist Sampling of Band-Limited RF Signal and Row-Column Addressed Arrays for Ultrafast 3-D Ultrasound Imaging Applications Hyojin Seong, et al. DGIST	Tu5.5 1475: Scatterer Generation in 3D for Efficient 2D Multi-Slice Simulations in Ultrasound Imaging François Gaits, et al. IRIT UMR 5505, CNRS Tu5.8 2514: Single Plane Wave High-Resolution Ultrasound Imaging with Deep Unfolded Neural Network Peng Liu, et al. School of Instrumentation and Optoelectronics Engineering, Beihang University Tu5.11 1761: A Novel Three-Dimensional Reconstruction Algorithm with Deep Learning Segmentation Approach for Breast Lesion Detection from Ultrasound Radial Scanning Imaging Chun-Hui Lin, et al. National Cheng Kung University	Tu5.6 2032: Coded Excitation with Unfocused Plane Waves for 3D Imaging Using a 2D Row Column Addressed Array Nizar Guezzi, et al. Daegu Gyeongbuk Institute of Science and Technology Tu5.9 2549: Rhombic Grids Reduce the Number of Voxels in Fast Pulse-Echo Ultrasound Imaging Martin Schiffner, et al. Ruhr-University Bochum Tu5.12 2301: Correlation-Based Ultrasound Imaging for Extended Field-of-View and Local Impedance Estimation Tamara Krpic, et al. Université de Sherbrooke
Tu5.13 2457: Quantitative Analysis of Array Dropouts in 3D Ultrasound Tomography/Volography James Wiskin, et al. QT Imaging Inc	Tu5.14 2374: Coupling Fast Superresolution CNN with Fast Plane-Wave Fourier-Domain Beamforming Farid Anjidani, et al. University of Victoria	Tu5.15 2499: A Robust Deep Neural Network Approach for Ultrafast Ultrasound Imaging Using Single Angle Plane Wave Mohammad Wasih, et al. The Pennsylvania State University, University Park

A2P-15: MIS - Vascular Imaging		
Chair(s): Piero Tortoli (University of Florence)		
Tu6.1 1624: Ultrafast Doppler Diverging Wave Imaging of	Tu6.2 1138: A Fast and Robust Clutter Filter for Mapping Blood	Tu6.3 1355: Spatiotemporal Tracking of Ultrasound
Coronary Flow Under Rapid Tissue Motion – Phantom	Flow Dynamics in Ultrafast Echocardiography	Nanobubble Dynamics
Experiments	Yue Xu, et al.	Dana Wegierak, et al.
Yizhou Huang, et al.	The University of Hong Kong	Case Western Reserve Universtiy
Eindhoven University of Technology		
Tu6.4	Tu6.5	Tu6.6
1466: An Attention-Based Convolutional Neural Network	1873: Modified Residual Dense Network Based Super-	2214: Quantitative Viscoelastic Response (QVisR)
for Differentiating Benign from Malignant Focal Liver	Resolution Localization Method	Domain Adaption with Fine Tuning
Lesions in Wash-In and Wash-Out Contrast-Enhanced	Haiyang Yu, et al.	Joseph Richardson, et al.
Ultrasonography	School of Life Science and Technology, Xi'an Jiaotong	North Carolina State University
Thodsawit Tiyarattanachai, et al.	University	
Faculty of Medicine, Chulalongkorn University		

Tu6.7	Tu6.8
2240: Feasibility of Deep Convolutional Neural Networks	2389: End-to-End Deep Learning for Tuning-Free Non-
for Cancer Detection in Acoustic Angiography	Contrast Ultrasound Microvessel Imaging
Thomas Kierski, et al.	Ahmed Tahseen Minhaz, et al.
The University of North Carolina at Chapel Hill	Case Western Reserve University

A2P-16: MSR - Super Resolution Ultrasound IV		
Chair(s): Matthew Bruce (University of Washington), Stefanie	Dencks (Ruhr-Universität Bochum)	
Tu7.1	Tu7.2	Tu7.3
1420: Improved Background Noise Suppression and	1452: Compensation for Velocity Underestimation in 2D	1529: Real-Time Super-Resolution Ultrasound Imaging
Microbubbles Localization for Ultrasound Localization	Super-Resolution Ultrasound	Using GPU Acceleration
Microscopy Using Acoustic Sub-Aperture Processing	Iman Taghavi, et al.	Sebastian Præsius, et al.
Lijie Huang, et al.	Technical University of Denmark (DTU)	Technical University of Denmark
Tsinghua University		
Tu7.4	Tu7.5	Tu7.6
2038: Comparison of Deep Learning-Based and	2061: Deep-Learning Based Localization-Free Super-	2144: Retrieving Pulsatility from Microbubble
Traditional Localization Methods for PFP Nanodroplets in	Resolution Microbubble Velocimetry Using a Long Short-	Trajectories in Ultrasound Localization Microscopy
Super-Resolution Ultrasound Imaging	Term Memory Neural Network	Myrthe Wiersma, et al.
Haiyang Yu, et al.	Xi Chen, et al.	Department of Imaging Physics, Delft University of
School of Life Science and Technology, Xi'an Jiaotong University	University of Illinois Urbana-Champaign	Technology, Delft, The Netherlands
Tu7.7	Tu7.8	Tu7.9
2178: A Machine Learning Approach to Cancer Detection	2203: A Physically Realistic Simulation Framework for	2443: Focused Super-Resolution Ultrasound Imaging In-
and Localization Using Super Resolution Ultrasound	Ultrasound Localization Microscopy	Vivo
Imaging	Alina Kuliesh, et al.	Francisco Santibanez, et al.
Georgios Papageorgiou, et al.	Delft University of Technology	University of North Carolina at Chapel Hill
Heriot-Watt University	Dank Chiroloxy of Tooliniology	Chirolony of North Carolina at Chapor rim
Tu7.10	Tu7.11	Tu7.12
2480: Ultrasound Localization Microscopy with Time-	2513: SparseNeST-ULM: Sparse Tensor Neural Network	1847: Simultaneous Plane Wave Acoustic and High-
Resolved Equivalent Time Active Cavitation Imaging	for ND-Ultrasound Localization Microscopy	Speed Optical Characterisation of Vaporization and
(ETACI)	Brice Rauby, et al.	Cavitation of Octafluoropropane Low Boiling Point
Samuel Desmarais, et al.	Polytechnique Montréal	Nanodroplets
Polytechnique Montréal		Kai Riemer, et al.
		Imperial College London

A2P-17: MSR - 3D Super Resolution Ultrasound Chair(s): Meagan O'Reilly (University of Toronto)		
Tu8.1 1541: 3D Super Resolution Using Row Column Specific Frame Multiple - In Vivo and In Vitro Demonstration Joseph Hansen-Shearer, et al. Imperial College London	Tu8.2 1641: Comparison of Localization Methods for 3D Super-Resolution Ultrasound Imaging Bingxue Wang, et al. Imperial College London	Tu8.3 1725: Deep Learning-Based 3D Beamforming on a 2D Row Column Addressing (RCA) Array for 3D Super- Resolution Ultrasound Localization Microscopy Jihun Kim, et al. University of Illinois Urbana Champaign(previous) / Kangnam University(Current)

Tu8.4	Tu8.5	Tu8.6
1918: In Vivo Whole Eye Microvasculature Imaging with	2131: 3D Acoustic Wave Sparsely Activated Localization	2585: Achievable Localization Precision of Clinical 3D
Ultrasound Localization Microscopy	Microscopy In Vivo with a Row-Column-Addressed Array	Ultrasound Localization Microscopy (ULM)
Shuang Lei, et al.	Using Phase Change Nanodroplet – A Feasibility Study	Stefanie Dencks, et al.
Shenzhen Institutes of Advanced Technology, Chinese	Qingyuan Tan, et al.	Ruhr-Universität Bochum
Academy of Sciences, China	Imperial College London	

Tu9.1	Tu9.2	Tu9.3
1045: Assessing the Acoustic Properties of Engineered	1163: In Vivo Visualization of Human Hand Tendon	1393: Effects of Polydispersity and High Scatterer
Tissues Using High-Frequency Ultrasound	Mechanical Anisotropy by Using High-Frequency	Concentration on Quantitative Ultrasound Estimates
Joseph Sebastian, et al.	Ultrafast Ultrasound Imaging	Olivier Lombard, et al.
University of Toronto	Guo-Xuan Xu, et al.	Université d'Avignon
	National Cheng Kung University	
Tu9.4	Tu9.5	Tu9.6
1823: Investigation Into the Acoustic Transparency of	2239: Effect of Plastination on Ultrasound Transmission	2410: Nonlinear Parameter B/A Estimation Using a
Reconstituted Mucus	Through Human Skulls	Second Order Volterra Filter
Mihnea Turcanu, et al.	Soline Bernard, et al.	Nayef Alshamlan, et al.
KU Leuven	Université de Sherbrooke	University of Minnesota, Twin Cities
Tu9.7		
2511: Adaptive Weighting Strategy in Regularized		
Quantitative Ultrasound		
Noushin Jafarpisheh, et al.		
Concordia University		

A2P-19: MTC - Ultrasound Methods for Characterizing Cancer and Monitoring Therapy II		
Chair(s): Roberto Lavarello (Pontificia Universidad Católica del Perú)		
Tu10.1 1255: Preclinical Comparison of H-Scan Ultrasound and Diffusion-Weighted Magnetic Resonance Imaging for Monitoring Treatment Responses in Breast Cancer Haowei Tai, et al. University of Texas at Dallas	Tu10.2 1591: H-Scan Ultrasound Imaging for the Classification of Thyroid Tumors Mawia Khairalseed, et al. University of Texas at Dallas	Tu10.3 2078: Deep Meta-Learning for the Selection of Accurate Breast Mass Ultrasound Classifier Michal Byra, et al. Insitute of Fundamental Technological Research, Polish Academy of Sciences
Tu10.4 2143: Dielectric, Mechanical and Acoustic Characterization of Multi-Modal Tissue-Mimicking Breast Phantoms Alessia Cannatà, et al. University of Pavia, Pavia	Tu10.5 2310: Changes in Quantitative Ultrasound Imaging as the Predictors of Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer Hanna Piotrzkowska-Wróblewska, et al. Institute of Fundamental Technological Research, Polish Academy of Sciences	Tu10.6 2413: Comparative Characterization of Fluid and Solid Breast Masses with Fundamental and Harmonic Amplitude- and Coherence-Based Ultrasound Beamforming Arunima Sharma, et al. Johns Hopkins University

Tu10.7	Tu10.8	Tu10.9
2556: Simulations of Acoustic Wave Propagation in the	1384: Malignancy Assessment of Breast Masses by	1739: First-in-Human H-Scan Ultrasound Imaging of
Breast with Tumors Using a Modified VICTRE Phantom	Machine Learning of Ultrasonic Spectral Statistics	Breast Cancer
Anna Pawlowska, et al.	Qizhen Sun, et al.	Luca Forte, et al.
Institute of Fundamental Technological Research, Polish	Beihang University	University of Texas at Dallas
Academy of Sciences	,	·

Chair(s): Meagan O'Reilly (University of Toronto) Tu11.1	Tu11.2	Tu11.3
1011.1 1051: Multi-Target Ultrasound Neuromodulation in the Treatment of Freely Moving Depression Mice Yiyue Zhu, et al. Guangdong University of Technology	1244: The Focused Ultrasound Stimulation of Infralimbic Cortex Attenuates Reinstatement of Methamphetamine-Induced Conditioned Place Preference Chia-Wei Lin, et al. National Tsing Hua University	1400: Behavioral Alterations Induced by Ultrasound Neuromodulation Are Not Related to Auditory Pathway Wen Meng, et al. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences
Tu11.4 1572: Noninvasive Ultrasound Stimulation Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice Shasha Yi, et al. Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology	Tu11.5 1698: Neural Network-Based Acoustic Hologram Generation for Fast and Precise Neuromodulation Moon Hwan Lee, et al. DGIST	Tu11.6 2330: Focused Ultrasound-Mediated Intranasal Delivery for AAV Delivery to Targeted Brain Regions with Minima Systemic Exposure Dezhuang Ye, et al. Washington University in st louis
Tu11.7 1270: Effect of Microvasculature Diameter on FUS-Mediated BBB Opening Sharon Katz, et al. Tel Aviv University	Tu11.8 1326: Intravital Imaging of Ultrasound-Induced Blood Brain Barrier Opening Using Transgenic Mice with Two- Photon Microscopy Mengni Hu, et al. Shenzhen University	Tu11.9 1385: First Metabolomic Signature of Blood-Brain Barrie Opening Induced by Microbubble-Assisted Ultrasound Antoine Presset, et al. UMR 1253, iBrain, Université de Tours, Inserm
Tu11.10 1450: Ultrafast Intrapulse Feedback Control of FUS- Induced BBB Disruption Corentin Cornu, et al. NeuroSpin/ Institut des sciences de la vie Frédéric Joliot / Direction de la recherche Fondamentale	Tu11.11 1493: Design and Holographic Field Reconstruction of Ultrasonic Lenses for Drug Delivery in Non-Human Primates Diana Andrés, et al. Consejo Superior de Investigaciones Científicas (CSIC)	Tu11.12 1621: Transcranial Histotripsy Induces Blood Brain Barrier Opening Sarah Duclos, et al. Department of Biomedical Engineering, University of Michigan
Tu11.13 2322: Assessment of Safety and Microglia Response to Short-Pulse Theranostic Ultrasound-Mediated Blood- Brain Barrier Opening Alec Batts, et al. Columbia University		

A2P-21: NSP – Signal Processing I			
Chair(s): Joel Harley (University of Florida, USA), Johan Carlson (Lulea University of Technology, Sweden)			
Tu12.1 1021: Accurate Location of Key Features in Ultrasonic-Based Spot Weld Inspection Aryaz Baradarani, et al. Institute for Diagnostic Imaging Research	Tu12.2 1377: Position Estimation of Slowly Moving Obstacles Using Ultrasonic Sensor Array Asuka Tsujii, et al. NGK SPARK PLUG CO., LTD.	Tu12.3 1551: Orthogonal Matching Pursuit Based Sparse Dispersive Radon Transform for Ultrasonic Guided Mode Extraction Shuhang Zheng, et al. Fudan University	
Tu12.4 1663: Deep Learning for Modeling of Sound Pressure Fields of Real-World Ultrasound Transducers Payal Gupta, et al. Luleå University of Technology	Tu12.5 1668: Fast Imaging of Crack Defects in Pipes Using Fourier-Domain Migration Fatemeh Mazinani, et al. University of Victoria	Tu12.6 1752: Reinforcement Learning Based Neural Architecture Search for Flaw Detection in Intelligent Ultrasonic Imaging NDE System Xin Zhang, et al. Illinois Institute of Technology	
Tu12.7 1773: Ultrasound Communication Through Thin Plates: Understanding and Estimating the Channel Asra Ashraf, et al. Luleå University of Technologt			

Tu12.8	aul Wilcox (University of Bristol, UK) Tu12.9	Tu12.10
1825: Improving Sonar Surveying of Subsea Cables and Pipelines with Adaptive Beamforming	1830: Detachable Ultrasonic Data Communication Through the Metal Plate with NFC Technology	1979: Ultrasonic Video Transmission Through Solid Metallic Channel
Gabor Geréb, et al.	Javad Abbaszadeh, et al.	Xin Huang, et al.
University of Oslo	Silicon Austria Labs GmbH	Illinois Institute of Technology
Tu12.11	Tu12.12	Tu12.13
2130: Super-Resolution of Deep Slots in Thick Materials	2309: Steel Material Microstructure Characterization	2366: An Open, Modular Ultrasound Digital Signal
by Ultrasonic Image Deconvolution Nans Laroche, et al.	Using Knowledge Distillation Based Transformer Neural Networks for Data-Efficient Ultrasonic NDE System	Processing Specification Harry Clegg, et al.
The Phased Array Company	Xin Zhang, et al.	University of Leeds
	Illinois Institute of Technology	

A2P-23: NTC – Transducers and NEH – Energy Harvesting II Chair(s): Kui Yao (IMRE, ASTAR, Singapore)		
Tu13.1	Tu13.2	Tu13.3
1198: Topology Optimization of Large Ultrasonic Tools	1261: Capacitive Micromachined Transducer Array for	1492: High Resolution Measurement of Coatings Inside
for Uniform Vibration Distribution	Non-Contact Air-Coupled Lamb Wave Detection of Plate	Thick, Hot, Steel Pipes
Yuji Wada, et al.	Structure	Claire Thring, et al.
Tokyo Institute of Technology	Shaojie Li, et al.	Novosound
	State Key Laboratory of Precision Measurement Technology	
	and Instrument, Tianjin University	

Tu13.4	Tu13.5	Tu13.6
1577: Air Coupled Probe Integrity Test Using Same Type	1602: Enabling Spatial Multiplexing in Guided Waves-	1839: Modelling the Beam Pattern of Piezopolymer
Probe on Parabolic Mirror	Based Communication: The Case of Quadrature	Interdigital Transducers (IDT) for Optimizing the Offaxis
Linas Svilainis, et al.	Amplitude Modulation Realized via Discrete Frequency	Response
Kaunas University of Technology	Steerable Acoustic Transducers	Luca Bergamaschi, et al.
	Masoud Mohammadgholiha, et al.	Università degli Studi di Firenze
	University of Bologna	
Tu13.7	Tu13.8	Tu13.9
1906: Direct-Write Piezoelectric Sensors for Generation	2138: A Compact Acoustic Waveguide for Air-Coupled	2153: Mechanical Stress Measurement Using Phased
and Detection of Zero-Group Velocity Lamb Waves for	Ultrasonic Phased Arrays at 40 kHz	Array Ultrasonic System
Nondestructive Evaluation	Matthias Rutsch, et al.	Yashar Javadi, et al.
Shuai Cao, et al.	Technische Universität Darmstadt	University of Strathclyde
Institute of High Performance Computing(IHPC)-ASTAR		
Tu13.10	Tu13.11	
2181: Pipeline Structural Health Monitoring Using	2017: Ultrasound Transducer Optimization for Wireless	
Frequency Steerable Acoustic Transducers	Battery Charging in Subcutaneous Implantable Device	
Masoud Mohammadgholiha, et al.	Thien Hoang, et al.	
University of Bologna	Vermon SA	

A2P-24: NPA - Photoacoustics and NPC -Process control and Industrial Ultrasound		
Chair(s): Edward Haeggstrom (University of Helsinki, Finland), Francisco Camarena (Universitat Politecnica de Valencia, Spain)		
Tu14.1	Tu14.2	Tu14.3
1036: Fully Planar Laser-Generated Focused Ultrasound	1685: Short-Wave Photoacoustic Lipid Imaging (SW-	2005: Stretchable Double-Layered Photoacoustic
Transmitter	PALI) for Detection of Early-Onset Alzheimer's Disease	Transmitter for Two-Dimensional Strain Measurement
Yujie Chen, et al.	Christopher Salinas, et al.	Kyu Kwan Park, et al.
School of Optical and Electronic information, Huazhong University of Science and Technology	University of Arizona	Sungkyunkwan University
Tu14.4	Tu14.5	Tu14.6
2518: Hilbert-Huang Transform Based Photoacoustic	2573: Laser Scanning for Single-Shot Frequency Diverse	1189: Measurement of Ultrasonic Radiation from
Signal Analysis for Bone Assessment	Photoacoustic Excitation	Consumer Electronics Devices
Jieshu Li, et al.	William Meng, et al.	Mari Ueda, et al.
Nanjing University of Science and Technology	Stanford University	Kanagawa Institute of Technology
Tu14.7	Tu14.8	
1277: Coupling Power Ultrasound Into Industrial Pipe	1524: Scaling-Up the Ultrasound Enhanced	
Walls	Electrospinning Device	
Kasper Peterzéns, et al.	Henri Österberg, et al.	
Altum Technologies, Helsinki and Electronics Research	Electronics Research Lab., Dept. of Physics, Univ. of Helsinki	
Laboratory, University of Helsinki, Helsinki		

A2P-25: PGP - General Physical Acoustics II Chair(s): Mihir Patel (MACOM)		
Tu15.1 1206: Spatiotemporal Characterization of the Water-Air Interface Deformation Induced by a Transient Acoustic Radiation Pressure Félix Sisombat, et al. GREMAN, UMR 7347, Université de Tours, INSA Centre-Val de Loire	Tu15.2 1231: Influence of Humidity on Elastic Constants of Biomineralized Calcite and Aragonite Structures by Ultrasonic BAW Technique Andrei Sotnikov, et al. Leibniz IFW Dresden	Tu15.3 1313: Rayleigh Wave Interaction with a Spherical Ball in Contact with a Plane Surface Aziz Bouzzit, et al. Laboratory SATIE UMR CNRS 8029 CY Cergy-Paris Université
Tu15.4 1896: Phononic Crystal Based Translation of Microparticles Using Standing Lamb Waves Laixin Huang, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences	Tu15.5 1904: Precise Observation of Ultrasonic Pulse Wave by a Simple Plasmon Resonance Sensor Shuto Nakatsuji, et al. Doshisha university	Tu15.6 1984: An Explanatory Model for Sound Radiation from Subsonic Surface Vibrations Erlend Magnus Viggen, et al. Norwegian University of Science and Technology
Tu15.7 2208: Acoustic Holograms Design Using Differentiable Acoustic Simulation Antonio Stanziola, et al. University College London	Tu15.8 2267: New Shear Horizontal (SH) Surface Acoustic Waves Propagating at the Interface Between Two Elastic Half-Spaces Piotr Kiełczyński, et al. Institute of Fundamental Technological Research	Tu15.9 2350: PDMS and HFE-7500 Binary Structures Based Acoustic Phase-Only Holography Rujun Zhang, et al. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
Tu15.10 2388: Active and Reactive Power Flow in Ultrasonic Love Wave Waveguides Piotr Kiełczyński, et al. Institute of Fundamental Technological Research		

A2P-26: PNL - Nonlinear Physical Acoustics II Chair(s): Mihir Patel (MACOM)			
Tu16.1 1092: Dual-Mode Second-Harmonic (DMSH) Generation on a Guided Medium Krishnadas Kanakambaran, et al. Indian Institute of Technology Madras	Tu16.2 1280: Holding Force Characteristics of Levitation by Jet from Small Hole of a Levitated Object Kohei Aono, et al. Muroran Institute of Technology	Tu16.3 1498: Optimal Command of the Nonlinear Elastic Wave Spectroscopy Method (NWMS) Nesrine Houhat, et al. research center in industrial technologies crti	
Tu16.4 1520: Nonlinear Simulation of Amplitude Modulation Pulse Sequencing for Contrast-Enhanced Ultrasound (CEUS) Imaging Shuangyi Cheng, et al. Fudan University	Tu16.5 1712: A Nonlinear Analysis of Surface Acoustic Waves in ST-Cut Quartz Crystals Haoxiang Wu, et al. Ningbo University	Tu16.6 1155: Machining of Aluminium with MHz High-Intensity Focused Ultrasound Topi Pudas, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	

|--|--|

Chair(s): Charles Courtney (University of Bath, UK) Tu17.1	Tu17.2	Tu17.3
1016: 3D Manipulation and Assembly of Microstructures Using Robotic Acoustic Streaming Tweezers Xianjie Shi, et al. State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University	1044: Ultrasound Multi-Layered Liquid Crystal Lens Yuma Kuroda, et al. Doshisha University	1115: Vibration Mode Tuning of Acoustic Pillar Array Chip for Precise Microscale Manipulations Shiyu Li, et al. Tianjin University
Tu17.4 1171: Study on Size-Effect of Silicon-Based Acoustic Micropillar Chip for High-Efficiency Particle Trapping Yujie Wei, et al. Tianjin University	Tu17.5 1267: MEMS Bessel Beam Acoustic Transducer (MEMS-BBAT) with Air-Cavity Lens Based on Spiral Diffraction Grating for Particle Trapping Yuyu Jia, et al. ShanghaiTech University	Tu17.6 1356: Manipulation and Deformation of Leukemia Cells by High Frequency Acoustic Tweezer Yushun Zeng, et al. University of Southern California
Tu17.7 1476: Near-Field Acoustic Levitation in Liquid Environment Mostafa Atalla, et al. TU Delft	Tu17.8 1618: Simultaneous Orientation Locking and Translation of Samples with Phased Arrays Mikko Korhonen, et al. University of Helsinki	Tu17.9 1856: Contactless Ultrasound Droplet Manipulation System for Mixing Chemical Reagents Yu-Chun Chu, et al. National Cheng-Kung University
Tu17.10 1988: Contactless Positioning of Objects on Acoustically Reflective Surfaces by Means of Ultrasonic Forces Marc Röthlisberger, et al. ETH Zurich	Tu17.11 2120: Generation of Acoustic Lattices in Air Using Polygonal Active Diffraction Gratings Darby Paez Amaya, et al. Universidad Autónoma de México-UNAM	Tu17.12 2146: Acoustic Pressure Measurement Using the Microparticles and Acoustic Tweezers Jinhee Yoo, et al. Pohang University of Science and Technology
Tu17.13 2147: Rotation Characteristics of Acoustically Actuated Thin-Film Rotors in Air and Water Shichao Jia, et al. Paul Scherrer Institut & University of Basel		

Chair(s): Shogo Inoue (Qorvo, Inc.) Tu18.1	Tu18.2	Tu18.3
1040: Enlarging Rayleigh Elimination Window Through Modulating Substrate and LiNbO3 Cut Angle for	1104: COM-based Modeling of SAW Scattering at Reflector Outer Edges in I.H.P. SAW Resonator	1403: A Simple Technique to Evaluate Lateral Leakage and Transverse Mode Behaviors of Reflectors in SH-
Fabricating LNOI-Based Spurious-Free Wideband SAW	Zhaohui Wu, et al.	Type SAW Resonator
Filters	University of Electronic Science and Technology of China	Xue-Qian Wu, et al.
Huiping Xu, et al.		University of Electronic Science and Technology of China
Tsinghua University Tu18.4	Tu18.5	Tu18.6
1445: Analysis of Longitudinal Leaky SAWs on Bonded	1556: Spurious-Free SH-SAW Resonators Using 36° YX-	1721: Study of Electrode Configuration for Low-Velocity
Structures Consisting of Similar and Dissimilar Materials	LiTaO3/SiO2/Si Substrate	SAW Resonator Using Low-Cut Lithium Niobate
Yudai Fujii, et al.	Shuxian Wu, et al.	Bin Shi, et al.
University of Yamanashi	Fudan University	UESTC
Tu18.7	Tu18.8	Tu18.9
1875: Exploring Surface Acoustic Wave Transversal	2124: Synthesis Approach to Ladder-DMS Mixed	2190: 2-State Switchable SAW Resonators on LiNbO3
Filters on Heterogeneous Substrates for 5G N77 Band	Structures	Using the Electrical Bragg Band-Gap
Mijing Sun, et al.	Lluís Acosta, et al.	Ricardo Alcorta Galván, et al.
Shanghai Institute of Microsystem and Information Technology	Universitat Autònoma de Barcelona	CNRS - IEMN
Tu18.10	Tu18.11	
2247: Microscale Confinement of Surface Acoustic	2380: Shear Horizontal Surface Acoustic Wave FIR Filters	
Waves in a Coupled Resonator Phononic Cavity	in Lithium Niobate on Insulator	
Jules Chatellier, et al.	Jack Guida, et al.	
FEMTO-ST	Northeastern University	

A2P-29: ABD - BAW Devices II Chair(s): Amelie Hagelauer (Fraunhofer EMFT, Technical University of Munich)			
Tu21.1 1071: Optimization Method for Single-Mode Performance of Laterally Excited BAW Resonators (XBARs) Natalya Naumenko, et al. National University of Science and Technology MISIS	Tu21.2 1862: Investigation of the BAW-Like Coupled Bulk Acoustic Resonators (CBAR) and Method to Further Improve the Coupling Coefficient Chen Liu, et al. Institute of Microelectrics, ASTR	Tu21.3 2167: Control of Miniaturization Degree in BAW CRF Rafael Perea-Robles, et al. Universitat Politècnica de Catalunya (UPC)	
Tu21.4 2302: Fast Modeling of Lateral Modes in BAW Resonators with Arbitrary In-Plane Geometry Carlos Udaondo, et al. Universitat Politècnica de Catalunya	Tu21.5 2465: Transversal Type BAW Filter Based on Polarization-Inverted ScAIN Multilayers Saneyuki Shibata, et al. Waseda University, ZAIKEN	Tu21.6 2483: Power Durability Evaluation of Higher-Order Mode Polarization-Inverted ScAIN Thin Film Resonators Saneyuki Shibata, et al. Waseda University, ZAIKEN	

Tu21.7 2509: Experimental and Numerical Study on the Second Order Harmonic and Third Order Intermodulation Distortion Response of Scandium Aluminum Nitride Based FBAR Devices with Different Scandium Doping Levels Ying Zhang, et al.	Tu21.8 2548: Polarization Inverted Two Layer ScAIN Thin Film Resonator Fabricated by Applying External Electric Field Naoki Ishii, et al. Waseda University, ZAIKEN	
---	---	--

A2P-30: TMS - Transducer Modeling and Electronics		
Chair(s): Alessandro Stuart Savoia (Roma Tre University) Tu19.1 1009: Acoustic Field of Strongly Focused HIFU Transducer Operating at 20 MHz - Comparison of Public Domain Numerical Simulators with Experimental Observations	Tu19.2 1223: Highly Sensitive Small Hydrophone with Built-In Stealth Preamplifier Shin-Ichiro Umemura, et al. Tohoku University	Tu19.3 1352: Affordable and Wireless Transducer Network to Detect Fouling in Pipes Petteri Salminen, et al. Electronics Research Lab., Dept. of Physics, University of
Tomasz Zawada, et al. TOOsonix A/S	,	Helsinki
Tu19.4 1568: Miniature Air Coupled Ultrasound Data Acquisition System for Field Application of Resonance Spectroscopy Arturas Aleksandrovas, et al. Kaunas University of Technology	Tu19.5 1674: Reaction-Diffusion Algorithm for Element Shaping in 2-D Sparse Array Beam Pattern Optimization Emmanuel Roux, et al. CREATIS, Université Claude Bernard Lyon 1	Tu19.6 1678: A Low-Cost Multi-Channel Driving System for Therapeutic Ultrasound Arrays Betul Ilbilgi Yildiz, et al. Imperial College London
Tu19.7 1936: Safe and Deep Brain Stimulation with a Minimal Two Single-Element Transducer Configuration: An In Silico Study Patrícia Andrade, et al. University of Tor Vergata	Tu19.8 1952: MEMS Microphone Array for Ultrasonic 3D Tracking Martin Krueger, et al. Infineon Technologies AG	Tu19.9 2070: Effect of Tapered Angle on BAW Transducer Performance for Ultrasonic Wavefront Computing Zaifeng Yang, et al. Institute of High Performance Computing, A-STAR
Tu19.10 2076: Numerical Characterization of Laser-Generated Focused Ultrasound-Induced Micro-Cavitation for Precision Treatment Min Gyu Joo, et al. Sungkyunkwan university	Tu19.11 2113: Dual-Axis MEMS Micro-Mirror Based on 36°Y Lithium Niobate Thin-Film Yaoqing Lu, et al. ShanghaiTech University	Tu19.12 2184: Simulation of Acoustic Losses in Waveguides for Air-Coupled Ultrasonic Phased Arrays Matthias Rutsch, et al. Technische Universität Darmstadt
Tu19.13 2519: Bimorph Piezoelectric MEMS Microphone with Tractive Structure Chaoxiang Yang, et al. Wuhan University	Tu19.14 2542: Synthetic Phase Alternating Row-Column (SPARC) Arrays Roger Zemp, et al. University of Alberta	Tu19.15 2278: Modelling the d36 Mode of Vibration Hannah Rose, et al. Thales UK & University of Glasgow

A2P-31: TMU - Micromachined Ultrasonic Transducers I				
Chair(s): Dominique Certon (François Rabelais University of Tours)				
Tu20.1	Tu20.2	Tu20.3		
1026: An Extension of Double-Stage DMAS for PMUT	1136: A CSM/TFM Imaging Scheme for Silicon-on-	1222: Highly Sensitive CMUT with Built-In Low-Voltage		
Array Imaging	Nothing ScAIN PMUT Arrays	FET		
Haining Li, et al.	Mantalena Sarafianou, et al.	Yoshitaka Tadaki, et al.		
Institute of Chemical Materials, China Academy of	IME	Mems Core		
Engineering Physics				
Tu20.4	Tu20.5	Tu20.6		
1282: Characterization of Low-Voltage Row-Column	1731: An Equivalent Circuit Model of PMUTs with	1805: Multi-Level Design and Characterization of		
Addressed CMUTs for 3D Imaging Applications	Clamped and Simply-Supported Plates	Piezoelectric Micromachined Ultrasonic Transducer		
Tony Merrien, et al.	Ira Wygant, et al.	Array for Intracardiac Echocardiography		
GRÉMAN UMR7347	Swift Sensing	Yun Zhang, et al.		
	3	Institute of Microelectronics of the Chinese Academy		
Tu20.7	Tu20.8	Tu20.9		
1809: Incorporation of Partially Clamped Boundary	1811: A Large-Signal Nonlinear Equivalent Circuit Model	1854: Investigation of the Beam Pattern of an Integrated		
Conditions in a Finite Difference cMUT Model	for CMUTs Operating in Collapse and Non-Collapse	2D CMUT Spiral Array Element		
Cyril Meynier, et al.	Modes	Monica La Mura, et al.		
VERMON	Alessandro Stuart Savoia, et al.	University of Salerno		
	Roma Tre University	,		
Tu20.10	Tu20.11	Tu20.12		
1942: Three-Dimensional Vascular Reconstruction and	2185: Accurate Radiation Impedance Approximations for	2317: An Efficient Electrode Optimization Method Based		
Doppler Flow Measurement Using PMUT Transducers	CMUT Design	on the In-Vacuo Strain Mode Shapes for Multi-Frequency		
Jinchang Li, et al.	Stine Løvholt Grue Pedersen, et al.	Fluid-Coupled PMUTs		
State Key Laboratory of Precision Measuring Technology and	,	Amirfereydoon Mansoori, et al.		
Instruments of Tianjin University		University of South-Eastern Norway		

Wednesday, October 12: 8:30 AM – 10:00 AM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	B1L-01: TMI - Flexible Transducers and High Frequency Arrays Chair(s): Franck Levassort (François Rabelais University of Tours), Sylvia Gebhardt (Fraunhofer IKTS)	B1L-02: MBF - Vector Flow Imaging I Chair(s): Lasse Lovstakken (Norwegian University of Science and Technology), Solveig Fadnes (Norwegian University of Science and Technology)	B1L-03: ABA - BAW Applications Chair(s): Amelie Hagelauer (Fraunhofer EMFT, Technical University of Munich), Omar Elmazria (Université de Lorraine)
8:30	1713: Development of a Wearable Ultrasound Transducer for Sensing Muscle Activities in Assistive Robotics Applications: In Vivo Study Xiangming Xue, et al. North Carolina State University	2072: Towards Multi-Probe High Frame Rate Volumetric Vector Doppler Imaging: A Feasibility Study Daniele Mazierli, et al. University of Florence	2289: Examination of Phonon Dissipation in 33 GHz Overmoded Bulk Acoustic Resonators Zachary Schaffer, et al. Carnegie Mellon University
8:45	2249: Low Temperature Flexible Thick-Film Piezoelectric Transducer for Catheter Applications Lee Bradley, et al. Georgia Institute of Technology School of Electrical and Computer Engineering	1818: Row-Column Tensor Velocity Imaging on Phantom Measurements Lasse Thurmann Jørgensen, et al. Technical University of Denmark	2274: Next Generation of BAW: The New Benchmark for RF Acoustic Technologies Andreas Tag, et al. Qorvo
9:00	1769: Fabrication and Characterization of FlexCMUT, a Flexible Polymer-Based Ultrasound Array for Conformal Imaging Amirhossein Omidvar, et al. University of British Columbia	1122: 3-D Intraventricular Vector Flow Mapping with Color Doppler: Feasibility in Patients Florian Vixège, et al. CREATIS, Lyon	1559: A 4 GHz Surface Excitation Solidly Mounted Microacoustic Resonator with 20% Coupling Marc Solal, et al. Qorvo
9:15	1696: High Frequency 2D Ultrasound Array Fabrication with Pitch-Shifting 3D Printed Interposer Yizhe Sun, et al. University of southern california	1987: Improving EchoPIV Accuracy in High Velocity Gradient Flows with Dynamic Anisotropic Kernel Windows Yichuang Han, et al. Erasmus MC, University Medical Center	1274: 9.5 GHz Solidly Mounted Bulk Acoustic Wave Resonator Using Third Overtone of Thickness Extension Mode in LiNbO3 Michio Kadota, et al. Tohoku university
9:30	2575: Development of a 50 MHz Linear Array for Endoscopic Imaging Carlos Felipe Roa, et al. University of Toronto	2312: Blood Velocity Estimation Techniques in Cortical Bone Sébastien Salles, et al. Sorbonne university	1102: FBAR Oscillator and MEMS Tunable VCSEL to Generate the Probe Lasers for Microfabricated Atomic Clock Motoaki Hara, et al. National Institute of Information and Communications Technology
9:45	1389: Development of a High Frequency Forward- Looking Phased-Array Transducer in Guiding Interventional Procedures Jiabing Lv, et al. University of Science and Technology of China	2348: Design of a Dual-Modality Tortuous Flow Phantom for Ultrasound and Optical Flow Mapping Chris Kallweit, et al. University of Waterloo	2363: Standalone Oscillator Implementation Using 2.5 GHz Mirror-Encapsulated BAW Resonator to Achieve ±20 PPM Overall Stability Ernest TT. Yen, et al. Texas Instruments

Wednesday, October 12: 8:30 AM – 10:00 AM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	B1L-04: NAI - Acoustic Imaging and Microscopy I Chair(s): Edward Haeggstrom (University of Helsinki, Finland), Yoshikazu Ohara (Tohoku University, Japan)	B1L-05: MSR - Super Resolution Ultrasound II Chair(s): Mickael Tanter (INSERM), Vassilis Sboros (HWU)	B1L-06: MTH - Drug delivery and bioeffects Chair(s): Klazina Kooiman (Thoraxcenter, Erasmus MC), Pai-Chi Li (National Taiwan University)
8:30	2539: Nematode Species Differentiation Using GHz Ultrasonic Micro Imager Anuj Baskota, et al. Geegah Inc	2450: Ultrafast Harmonic Imaging for Myocardial Ultrasound Localization Angiography: A Phantom Study Michael Mougharbel, et al. Polytechnique Montreal	1037: (INVITED) Non-Invasive Ultrasound Therapy in the Spinal Cord Meaghan O'Reilly University of Toronto
8:45	2444: High-Resolution 3D Ultrasonic Phased-Array Imaging Using Piezoelectric and Laser Ultrasonic System (PLUS) for Nondestructive Evaluation Yoshikazu Ohara, et al. Tohoku University	2066: Assessment of Microvascular Flows in the Arterial Wall of Takayasu's Patients Using Ultrasound Localization Microscopy Anatole Jimenez, et al. Physics for Medicine Paris, INSERM U1273, ESPCI, CNRS, PSL University	
9:00	1790: 3D Object Reconstruction from Outdoor Ultrasonic Image Using Variational Autoencoder Ryotaro Ohara, et al. Kobe University	1479: In-Vivo Monitoring of Liver Regeneration by Ultrasound Localization Microscopy: A Feasibility Study Rui Wang, et al. Tsinghua University	1609: Cerebral Infarct Reduction and Neuron Protection After Ischemic Stroke-Reperfusion by Acousto-Mechanical Oxygen Delivery Yi-Ju Ho, et al. National Yang Ming Chiao Tung University
9:15	2033: Ultrasound Tracking of Gas Bubbles Through a Multi-Mode Waveguide in Hot Melts Zehua Dou, et al. Technische Universität Dresden	1791: Multiscale Ultrasound Localization Microscopy in the Kidney Louise Denis, et al. Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale	1552: Piezo Mechanosensitive Ion Channels Modulate Motor Response In Vivo During Transcranial Focused Ultrasound Stimulation (tFUS) of the Cerebral Motor Cortex Tianqi Xu, et al. Department of Biomedical Engineering, Xi'an Jiaotong University
9:30	2140: Grating Lobe Suppression Through Novel, Sparse Laser Induced Phased Array Design Peter Lukacs, et al. University of Strathclyde	1949: In Vivo 3D Ultrasound Localization Microscopy of the Rat Coronary Microvasculature Oscar Demeulenaere, et al. Physics for Medicine, Inserm ESPCI Paris, PSL University, CNRS	1627: A Cobalt-Based Drug Delivered with Rapid Short Pulses In Vivo Reduces Amyloid Beta Burden in Alzheimer's Disease Mice Sophie Morse, et al. Imperial College London
9:45	2530: Difference-Frequency-Based Ultrasonic Contrast Imaging of Material Elasticities Dong Hun Kim, et al. Bionics Research Center, Korea Institute of Science and Technology (KIST)	1407: In Vivo Super Resolution Ultrasound Imaging Using the Erythrocytes - SURE Jørgen Arendt Jensen, et al. Center for Fast Ultrasound Imaging, Technical University of Denmark	2400: Ultrasound Retina Stimulation Can Cause Visual Behavior Response in Rats Chen Gong, et al. USC Roski Eye Institute, University of Southern California

Wednesday, October 12: 8:30 AM – 10:00 AM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1
	B1L-07: MEL - Muscle Elastography Chair(s): Jean Luc Gennisson (Universite Paris-Saclay), Matthew Urban (Mayo Clinic)	B1L-08: MIS - Image Enhancement I Chair(s): Denis Kouamé (University Paul Sabatier Toulouse IRIT), Brett Byram (Vanderbilt University)	B1L-09: MBB - Advanced Beamforming II Chair(s): Wei-Ning Lee (Hong Kong University)
8:30	2474: Modeling Shear Wave Propagation in an Incompressible, Transversely Isotropic Material Using Physics-Informed Neural Networks Felix Jin, et al. Duke University	2079: Inverted Pulse Estimation in Pulse Inversion Harmonic Imaging Using Deep Learning Mariam Fouad, et al. RUB	2491: Improvements in Virtually Compounded Fourier Imaging with Row-Column Addressed Arrays Shang-Ching Lin, et al. National Taiwan University
8:45	2280: On the Correlation Between Knee Flexion and 3D Shear Wave Speed and Amplitude in In Vivo Vastus Lateralis Courtney Trutna Paley, et al. Duke University	1872: In-Vivo Speed-of-Sound Imaging Using the Temporal Focused Reflection Matrix Flavien Bureau, et al. ESPCI, Institut Langevin	2179: A New Transmission Scheme to Approach Azimuth-Elevation Isoplanar Resolution in a 1024- Element Matrix Probe Configuration Xiaochuan Wu, et al. The University of Hong Kong
9:00	1293: Dynamic Stiffness Changes in Skeletal Muscle During Contraction and Relaxation Quantified by Time-Harmonic Elastography Yang Yang, et al. Charité – Universitätsmedizin Berlin	1960: Motion Correction Using Deep Learning Neural Networks – Effects of Data Representation Rifkat Zaydullin, et al. Imperial College London	1272: A Switchable Deep Beamformer for Passive Acoustic Mapping Yi Zeng, et al. ShanghaiTech University
9:15	2165: Characterization of Muscle Transverse Isotropic Properties Using a T-Shaped Array Transducer Chien Chen, et al. National Cheng Kung University	1938: Neural Maximum-a-Posteriori Beamforming Through Deep Unfolding Ben Luijten, et al. Eindhoven University of Technology	1195: Deep Learning Improves Dataset Recovery for High Frame Rate Synthetic Transmit Aperture Imaging Jingke Zhang, et al. Tsinghua University
9:30	2111: 3D SWEI Improves Precision Over 2D SWEI Both Along and Across Fibers in Healthy In Vivo Skeletal Muscle Measurements Courtney Trutna Paley, et al. Duke University	1119: Adaptive Contrast Enhancement of Cardiac Ultrasound Images Using a Deep Unfolded Many-Body Quantum Algorithm Sayantan Dutta, et al. IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse	2566: A Novel Adaptive Imaging Technique Using Point Spread Function Reshaping Wei-Hsiang Shen, et al. National Tsing Hua University
9:45	1530: In-Vivo 3D Passive Elastography Using Row-Columns Arrays: Proof of Concept Miguel Bernal, et al. Verasonics SAS, Medellin, Colombia	1850: Experimental Validation of CNN-Based Ultrafast Ultrasound Imaging Dimitris Perdios, et al. École polytechnique fédérale de Lausanne (EPFL)	1747: A New Bi-Directional Pixel Based Focusing Method with a Virtual Ellipse Youngray Kim, et al. Sogang University

Wednesday, October 12: 11:00 AM – 12:30 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	B3L-01: TMU - CMUT Chair(s): Omer Oralkan (NC State University), Dominique Certon (François Rabelais University of Tours)	B3L-02: MSD - Systems and Devices Chair(s): Ralf Seip (SonaCare Medical, LLC), Jonathan Mamou (Riverside Research)	B3L-03: POA - Opto-Acoustics Chair(s): David Feld (Skyworks, Inc.)
11:00	2535: Giant Pressure Output Efficiency of Capacitive Micromachined Ultrasonic Transducers Using Nano-Silicon-Springs Haeyoun Kim, et al. Korea Institute of Science Technology	1183: Noncontact Laser Ultrasound (NCLUS) – Path to Operational Medical System Robert W Haupt, et al. MIT Lincoln Laboratory	2591: (INVITED) Concepts for Picosecond Ultrasonics with X-Rays Matias Bargheer Univaersity of Potsdam
11:15	2541: Performance Assessment of an Ultra- Wideband 1D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array for Acoustic Angiography Ermek Belekov, et al. North Carolina State University	1817: Automated Bladder Volume Measurement System Using a T-Shaped Cross-Array Ultrasound Probe Daehyun Park, et al. Sogang University	
11:30	2536: A Pre-Charged CMUT Structure with a Built-In Charge Storage Capacitor Muhammetgeldi Annayev, et al. North Carolina State University	1213: A 3D Transcranial Submillimetric Ultrasound Tracking Solution for Biomedical Microdevice Pierre Zarader, et al. Robeauté, ISIR (Sorbonne Universite, CNRS, INSERM), LIB (Sorbonne Universite, CNRS, INSERM)	1907: Estimation of the Elastic Tensor of Lithium Niobate from Brillouin Light Backscattering Measurements with a Single Wafer Fehima Ugarak, et al. Université de Bourgogne Franche-Comté
11:45	2128: Ultra-Low-Voltage CMUTs with Increased Output Pressure Due to Piston-Structured Plates Fabian Merbeler, et al. Technische Universität Darmstadt	1325: Tunable Focused Ultrasound Device for High Precision Drug Delivery to the Mouse Brain Zhongtao Hu, et al. Washington University in St. Louis	1361: Acoustic Vortex as Optical Waveguides to Improve Light Penetration Hsiu-Hui Tu, et al. National Tsing Hua University
12:00	1480: Comparative Analysis of Capacitive Micromachined Ultrasonic Transducers and Piezoelectric Transducers for Coded Excitation Mudabbir Tufail Bhatti, et al. Technical University of Denmark	1224: Forward-Viewing, Robotically-Steered Guidewire Imaging with Automated Segmentation for Peripheral Revascularization Graham Collins, et al. Georgia Institute of Technology and Emory University	1345: Artifact Removal Factor for Circular-View Photoacoustic Tomography Soheil Hakakzadeh, et al. Sharif Univ. of Tech.
12:15	1672: Optimized Transmission Electrical Broadband Impedance Matching for PolyCMUT Gabriel Guerreiro, et al. UBC	2264: Development and Evaluation of Pulsed Magnetic Field Generators for Magnetomotive Ultrasound Imaging Systems Ernesto Edgar Mazón Valadez, et al. Universidade de Sao Paulo	1948: Estimation of Landau-Placzek Ratio in Liquid by Rayleigh and Brillouin Scatterings Shuto Inamoto, et al. Doshisha University

Wednesday, October 12: 11:00 AM – 12:30 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Darsena	Grande / Cinema 1.2
	B3L-04: NAI - Acoustic Imaging and Microscopy II Chair(s): David Weik (TU Dresden)	B3L-06: MTC - Tissue Characterization - Cardiovascular and Cardiopulmonary I Chair(s): Emilie Franceschini (CNRS at Aix-Marseille University), Guy Cloutier (University of Montreal)	B3L-07: Clinical session Chair(s): Ton Van Der Steen (Erasmus Medical Centre), Damien Garcia (CREATIS Insa Lyon)
11:00	1722: Epitaxial PbTiO3 Ultrasonic Transducer for Higher Resolution of Fingerprint Imaging Using GHz Reflectometry of Back Side of Substrate Yuna Koike, et al. Waseda University, ZAIKEN	1647: Quantitative Ultrasound Assessment of Red Blood Cell Aggregation Alongside Photoacoustic-Based Oxygen Saturation in the Human Radial Artery Taehoon Bok, et al. Ryerson University	1002: (INVITED) Shear Wave Elastography in Diffuse Liver Disease: Advantages and Limitations Giovanna Ferraioli University of Pavia
11:15	1771: Inspection of Multilayered Electronic Devices via Scanning Acoustic Microscopy Using Synthetic Aperture Focusing Technique Mario Wolf, et al. TU Bergakademie Freiberg	2116: In Vivo Local Assessment of Abdominal Aorta Distensibility from Freehand 2D Ultrasound Imaging Larissa Jansen, et al. Photoacoustics and Ultrasound Laboratory Eindhoven	
11:30	1706: A Circular Total Focusing Method for Tube's Immersion Ultrasonic Endoscopy Ze Xi, et al. Tsinghua University	1162: Dynamic High-Spatiotemporal Wall Shear Stress Imaging of Murine Heart Through High Frequency Vector Doppler Imaging Chi-Hung Yang, et al. National Cheng Kung University	1834: (INVITED) Mid- and Long-Term Atrio- Ventricular Mechanics in Children After Recovery from Asymptomatic or Mildly Symptomatic COVID-19 Giovanni Di Salvo University Hospital of Padua
11:45	1448: In Vivo 3D Super-Resolution Ultrasound Imaging of a Rat Kidney Using a Row Column Array Iman Taghavi, et al. Technical University of Denmark (DTU)	1835: Patient-Specific Characterization of Abdominal Aortic Aneurysms Using 4D Ultrasound and a Modified Virtual Fields Method Mirunalini Thirugnanasambandam, et al. Eindhoven University of Technology	
12:00	1413: Analogue Cancellation of Unwanted Reflections for Enhanced Ultrasound Microscopy Martin Weber, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	1975: Random Matrix Theory to Quantify Pulmonary Fibrosis Severity in Rodent Lungs, In Vivo Azadeh Cole, et al. NC State University	2596: (INVITED) Ultrasound in Neurosurgery: from Image Guidance to Therapy Francesco Prada IRCCS Istituto Neurologico Carlo Besta
12:15	1205: 4D Scanning Acoustic Microscopy Felix Sundblad, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	2451: Surface Oscillation Acoustic Rheometry to Measure Viscoelasticity of Soft Biomaterials Eric Hobson, et al. University of Michigan	

Wednesday, October 12: 11:00 AM – 12:30 PM (Lectures)

	Perla / Casinò 1.1	Red Carpet / Excelsior 3.1	Mosaici 2 / Casinò 3.2
	B3L-08: MPA - Photoacoustic imaging II Chair(s): Stuart Foster (University of Toronto)	B3L-09: MBB - Imaging Methods and Quality Assessment Chair(s): Barbara Nicolas (CREATIS)	B3L-05: Ultra-SR Challenge Finalists Chair(s): Vassilis Sboros (Heriot-Watt University), Mengxing Tang (Imperial College London)
11:00	2316: In Vivo Estimation of Murine Myocardial Oxygenation with Physiological Signal Gating and Motion Compensation Rashid Al Mukaddim, et al. University of Wisconsin - Madison	1673: Phocospace: An Open-Source Simulation Package to Implement Photoacoustic Spatial Coherence Theory Michelle Graham, et al. Johns Hopkins University	Organisation team: Marcelo Lerendegui, Georgios Papageorgiou, Kai Riemer, Bingxue Wang, Lachlan Arthur Super-resolution (SR) ultrasound imaging, particularly through localisation and tracking of microbubble contrast agents (also known as ultrasound localisation microscopy or ULM), is a new exciting area of research in biomedical ultrasound with potential impact in a wide range of biomedical applications. In recent years many different SR methodologies and algorithms have been proposed by different groups and their applications to biological systems, pre-clinical models and clinical patients are being explored. Firstly an introduction to the challenge will be given by the organisers, followed by talks from 9 finalists to describe their SR methods and results. The finalists will be announced before the conference begins and can be found at https://ultra-sr.com/.
11:15	1175: Multispectral Photoacoustic Fluctuation Imaging for Full Visibility SO2 Imaging Guillaume Godefroy, et al. Univ. Grenoble Alpes, CNRS, LiPhy	2207: Linear Decomposition of Backscatter Spatial Covariance Using Generalized Least Squares Rifat Ahmed, et al. Duke University	
11:30	1688: Respiratory-Corrected, In-Vivo Photoacoustic Imaging of Oxygenation and Collagen in the Mouse Kidney and Liver Eno Hysi, et al. St. Michael's Hospital	2112: Spatial Coherence and Image Quality of Large Aperture Hepatic Imaging Rifat Ahmed, et al. Duke University	
11:45	1521: Photoacoustic Spectral Analysis for In Vivo Detection of Collagen Content in Cancers Jiayan Li, et al. Tongji University	1033: Flexible Ultrasound Array Shape Estimation Using Phase Coherence Marcus Ingram, et al. KU Leuven	
12:00	2469: A Flexible Array Transducer for Photoacoustic- Guided Surgery Jiaxin Zhang, et al. Johns Hopkins University	1840: Ultrasound Imaging Using Orthogonal Coded Sequences with Separate Transmitters-Receivers Frank Nicolet, et al. Creatis/TPAC	
12:15	1065: Integrated Photoacoustic Pen for Breast Cancer Sentinel Lymph Node Detection Daohuai Jiang, et al. ShanghaiTech University	1883: Issues with Histogram Matching for Fair Evaluation of Image Quality Metrics Andreas Austeng, et al. University of Oslo	

Wednesday, October 12: 2:00 PM - 3:30 PM (Lectures)

	Volpi / Casinò 1.2	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2
	B5L-03: PMI - Modelling and Inversion I Chair(s): Koen van Dongen (Delft University of Technology), Anthony Mulholland (University of Bristol)	B5L-04: NDE – General NDE Methods I Chair(s): Paul Wilcox (University of Bristol, UK)	B5L-05: MTH - Blood-Brain-Barrier Opening Chair(s): Kullervo Hynynen (University of Toronto), Pauline Muleki Seya (CNRS)
14:00	1165: The Role of Acoustic Streaming in Ultrasound- Enhanced Electrospinning – A FEM Simulation Study Joni Mäkinen, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	1157: Matrix Array Inspections in NDT: 3D Imaging with the Virtual Array Method Guillermo Cosarinsky, et al. ITEFI	1249: Focused Ultrasound Immunomodulation on the Myeloid Compartment of the Brain in Treating GBM and Alzheimer's Disease Tao Sun, et al. Brigham and Women's Hospital, Harvard Medical School
14:15	2563: Deep-Learning Acoustoelastic to Acoustic Signal Processing for Quantitative Imaging of Bone Using Full-Waveform Inversion Thomas Robins, et al. Imperial College London	1245: Model Compression and FPGA Implementation of an Ultrasonic Flaw Detection Algorithm Based on Meta Learning Yu Yuan, et al. Illinois Institute of Technology	1227: Role of Calcium Ions in In-Vitro Acoustically- Mediated Blood-Brain Barrier Opening Jifan Chen, et al. Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
14:30	1131: Nonlinear Waveform Inversion for Quantitative Ultrasound Avner Shultzman, et al. The Weizmann Institute	2594: (INVITED) Applications of Data Science and Machine Learning to Ultrasonic NDE Paul Wilcox University of Bristol	1869: Changes in P-Glycoprotein and Breast Cancer Resistance Protein Expressions Induced by Focused Ultrasound -Mediated Blood-Brain Barrier Disruption Allegra Conti, et al. University of Rome Tor Vergata
14:45	1328: Time Versus Frequency Domain Full-Waveform Inversion for Ultrasound Imaging Ana Ramírez, et al. Universidad Industrial de Santander		2067: Evaluation of Subharmonic Emissions During Ultrasound-Mediated Blood-Brain Barrier Disruption in Glioblastoma Patients Nathan McDannold, et al. Brigham and Women's Hospital
15:00	1639: Joint Inversion of Acoustic and Electromagnetic Wave Fields Eva Scherders, et al. Delft University of Technology	1251: Non-Contact Laser-Ultrasound Measurement of Both Young's Modulus and Poisson's Ratio in Metals Using Surface Propagating Acoustic Waves Ryan Canfield, et al. University of Washington	2371: Blood Volume Reduction in Ultrasound Localization Microscopy After Blood-Brain Barrier Opening Sua Bae, et al. Columbia University
15:15	1560: Open-Source Modelling of Non-Linear Ultrasound and Microbubble Physics in Complex Media Carlos Cueto, et al. Imperial College London	1390: Improvement of Internal Defect Detection Accuracy Using Correlation Processing with the Emission Waveform for Noncontact Acoustic Inspection Method Tsuneyoshi Sugimoto, et al. Toin Univ. of Yokohama	2349: Focused Ultrasound-Induced Blood-Brain Barrier Opening Decelerates the Rate of Pathology Accumulation in a Triple Transgenic 3xTg Mouse Model of Alzheimer's Disease Rebecca Noel, et al. Columbia University

Wednesday, October 12: 2:00 PM - 3:30 PM (Lectures)

	Darsena	Grande / Cinema 1.2	Perla / Casinò 1.1
	B5L-06: MTC - Ultrasound Methods for Characterizing Cancer and Monitoring Therapy I Chair(s): Michael Kolios (Ryerson University), Kenneth Hoyt (UT Dallas)	B5L-07: MIM - Cardiovascular Imaging Chair(s): Richard Lopata (Eindhoven University), Wei-Ning Lee (Hong Kong University)	B5L-08: MIS - Functional and Interventional Chair(s): Brooks Lindsey (Georgia Institute of Technology), Stanislav Emelianov (Georgia Institute of Technology and Emory University School of Medicine)
14:00	1130: (INVITED) Towards Prostate Cancer Diagnostics by Ultrasound: from Microvascular Characterization to Al Massimo Mischi Eindhoven University of Technology	1889: Three-Dimensional Velocity Estimation of Natural Mechanical Waves in the Myocardium Mohammad Mohajery, et al. NTNU	2441: SPAU-Net: Voxelwise Spectral Unmixing and Oxygen Saturation Estimation Using Deep Autoencoders Sarkis Ter Martirosyan, et al. Georgia Institute of Technology
14:15		1851: High Frame Rate and Clinical Contrast Echocardiography for Imaging Myocardial Perfusion – An Initial Comparison Matthieu Toulemonde, et al. Imperial College London	1970: Real-Time Optical Ultrasound Imaging of Needle Insertions with Artefact Suppression Efthymios Maneas, et al. University College London
14:30	2320: Predicting Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer Using Harmonic Motion Imaging Niloufar Saharkhiz, et al. Columbia University	1962: Microcirculation Characterization of a Heart Transplant Graft Using Ultrasound Localization Microscopy Oscar Demeulenaere, et al. Physics for Medicine, Inserm ESPCI Paris, PSL University, CNRS	2343: A Deep Learning Approach to Predict Focused Ultrasound-Induced Blood-Brain Barrier Opening Keyu Liu, et al. Columbia University
14:45	1911: 3D Ultrasound-Based Multiparametric Imaging for the Monitoring of Structural and Functional Characteristics of Growing Breast Tumors in a MMTV-PyVT Murine Model Jean-Baptiste Guillaumin, et al. Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, PSL University	1775: A Novel Dual-Element Catheter for Improving Non-Uniform Rotation Distortion in Intravascular Ultrasound Baoqiang Liu, et al. Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology,	2054: Subspectrum Doppler Characteristics of the Functional Ultrasound (fUS)-Signal Sadaf Soloukey, et al. Dept. of Neuroscience and Neurosurgery, Erasmus MC
15:00	1502: In-Vivo Classification of Metastatic Lymph Nodes Using Quantitative Ultrasound at Clinical Frequencies Cameron Hoerig, et al. Weill Cornell Medicine	1383: Development of Implicit Representation Method for Freehand 3D Ultrasound Image Reconstruction of Carotid Vessel Sheng Song, et al. ShanghaiTech University/School of Information Science and Technology	1794: Fusion of Multi-Frequency Ultrasound Imaging Based on Wavelet Transform for Guided Screw Insertion Xiangxin Li, et al. University of Science and Technology of China
15:15	2201: Combined B-Mode and Nakagami Images for Improved Discrimination of Breast Masses Using Deep Learning Sabiq Muhtadi, et al. University of North Carolina at Chapel Hill	1955: Time Resolved High Frame Rate Multi Volume 3D Ultrasound Imaging of Abdominal Aortic Aneurysm Phantoms Larissa Jansen, et al. Photoacoustics and Ultrasound Laboratory Eindhoven	2199: Electromechanical Cycle Length Mapping for Atrial Arrhythmia Detection and Treatment Success Assessment Melina Tourni, et al. Columbia University

Wednesday, October 12: 4:30 PM – 6:00 PM (Lectures)

	Volpi / Casinò 1.2	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2
	B6L-03: AMA - Materials for Acoustic Wave Devices I Chair(s): Ausrine Bartasyte (University of Franche- Comté), Marc Solal (Qorvo, Inc.)	B6L-04: NWP - Wave propagation and NDE - General NDE II Chair(s): TBA	B6L-05: MTN - Image Guidance Chair(s: Zhen Xu (University of Michigan), Virginie Papadopolou (University of North Carolina)
16:30	1736: High-Order Mode Film Bulk Acoustic Wave Resonators Consisting of Polarity Inverted Multilayered GeAIN/AIN Films Jun Sekimoto, et al. University of Yamanashi	1291: Ultrasonic Beam Transmission in the Backward- and Forward-Wave Frequency-Wavenumber Bands of a Fluid-Embedded Steel Plate Mathias Sæther, et al. University of Bergen	1957: Platform for US-Guided Real-Time Closed- Loop Control of Magnetic Microbots Richard Nauber, et al. IFW Dresden
16:45	2562: SMR-Type Piezoelectric Transformer Based on C-Axis Zig-Zag Polarization Inverted ScAIN Multilayer Kazutaka Shiraiwa, et al. Waseda university, ZAIKEN	1701: Physics-Informed Neural Networks with Resampling Technique to Model Ultrasound Wave Propagation of a Multi-Element Transducer Shaikhah Alkhadhr, et al. The Pennsylvania State University	2003: Individualized Closed-Loop Feedback Control of Focused Ultrasound for Blood-Brain Barrier Opening in a Porcine Model Chih-Yen Chien, et al. Washington University in St. Louis
17:00	2196: Influence of Piezoelectric Losses on the Quality Factor of BAW Resonators Istvan Attila Veres, et al. Qorvo	2458: Precise Observation, Separation and Synthesis of Shear Waves Using Ultrasonic Vectoral Doppler Measurement and Spatio-Temporal Multidimensional Spectral Processing Chikayoshi Sumi, et al. Sophia University	1801: Estimation of Stiffness Change by High Intensity Focused Ultrasound Using Pulse-Inversion Shear Wave Elastography – Phantom Study Wei-Cheng Hsiao, et al. Chang Gung University
17:15	2463: Fabrication of Epitaxial Piezoelectric Layer on Acoustic Bragg Reflector Using Epitaxial Sacrificial Layer Satoshi Tokai, et al. Waseda University, ZAIKEN, JST-CREST, JST-FOREST	1156: Fast and Automatic Array Tilt Compensation for 1.5D Array Transducers Guillermo Cosarinsky, et al. ITEFI	2271: High-Rate Implicit Cavitation Localization During Histotripsy via Backwards Transmit-Delay Acoustic Cavitation Emission (backTRACE) Methods Jonathan Sukovich, et al. University of Michigan
17:30	1276: A Comparative Study of Acoustic Loss in Piezoelectric on Insulator (POI) Substrates Pengcheng Zheng, et al. Shanghai Institute of Microsystem and Information Technology	2595: (INVITED) A New Look to Airborne Acoustic Levitation: Trapping at the Pressure Antinodes Karen Volke-Sepulveda National Autonomous University of Mexico	2373: Real-Time Lesion Monitoring During HIFU Treatment Using Interleaved Harmonic Motion Imaging Guided FUS (Interleaved-HMIgFUS) Ex Vivo, Mouse In Vivo, and Human In Vivo Xiaoyue Li, et al. Columbia University
17:45	2579: A Method for Evaluating Sole Mechanical Properties of Acoustic Bragg Reflector by Pulse Echo Technique in the GHz Range Naoki Ishii, et al. Waseda University, ZAIKEN		2455: Functional Ultrasound Quantification of Hemodynamic Changes in Response to Focused Ultrasound Neuromodulation in the Murine Brain In Vivo Christian Aurup, et al. Columbia University

Wednesday, October 12: 4:30 PM – 6:00 PM (Lectures)

	Darsena / Cinema 1.1	Grande / Cinema 1.2	Perla / Casino 1.1
	B6L-06: MBB - Image Correction I Chair(s): Jeremy Dahl (Stanford University), Svetoslav Nikolov (BK Ultrasound)	B6L-07: MSR - Super Resolution Ultrasound III Chair(s): Georg Schmitz (Ruhr-Universität Bochum)	B6L-08: MCA - Drug delivery and cavitation Chair(s): Mike Averkiou (University of Washington), Ayache Bouakaz (University of Tours)
16:30	2531: High-Resolution Beamforming in Inhomogeneous Media Based on Layer-Wise Speed of Sound Estimation and Refraction Compensation Pat De la Torre, et al. University of Waterloo	2326: Assessment of the Transient Blood Flow Changes After Acute Kidney Injury Using Super- Resolution Ultrasound Imaging Qiyang Chen, et al. University of Pittsburgh	1728: Rapid Cell Pairing and Fusion Based on Stable Cavitating Bubbles Xiufang Liu, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
16:45	1841: Effect of Geometric and Transmit Corrections on Global Speed of Sound Estimation Hannah Strohm, et al. Fraunhofer Institute for Digital Medicine, MEVIS, mediri GmbH	2222: "Aliasing" in Ultrasound Localization Microscopy-Derived Blood Flow Velocity Estimates Jonah Harmon, et al. University of Washington	1209: Single Endothelial Cell-Microbubble Interactions Elucidated Using Monodisperse Microbubbles Yuchen Wang, et al. Erasmus MC
17:00	2168: Optimal Abdominal Imaging with Bulk Speed of Sound Beamforming Scott Schoen Jr, et al. Harvard Medical School and Massachusetts General Hospital	2028: 3D Spatial-Temporal Non-Local Mean Filter for Improved Super-Resolution Ultrasound Clotilde Vié, et al. Imperial College London	1981: Investigating Microbubble-Mediated Vascular Permeability in a Vessel-on-a-Chip Model Bram Meijlink, et al. Erasmus MC
17:15	2572: Speed of Sound Estimation from Multi- Angle Common Midpoint Gathers of Non- Beamformed, Full-Synthetic Aperture Data Thurston Brevett, et al. Stanford University	1826: Improved Bubble Isolation in 3D Super- Resolution Imaging by Channel-Variance-Based Beamforming Jipeng Yan, et al. Imperial College London	2353: In Vivo Photoacoustic Monitoring of Stem Cell Viability with a Caspase3-Responsive Nanosensor Anamik Jhunjhunwala, et al. Georgia Institute of Technology
17:30	2488: Phase Gradient Tensor Operator for Aberration Correction in Ultrasound Localization Microscopy Paul Xing, et al. Polytechnique Montreal	1638: Volumetric Image Projection Super-Resolution (VIP-SR) Ultrasound with a 1D Array Probe – Experimental Demonstration Bingxue Wang, et al. Imperial College London	1514: Treatment of Hypertrophic Cardiomyopathy by Ultrasound-Mediated Delivery of miR-1 Davindra Singh, et al. Concordia Uniiversity
17:45	1192: Grating Lobe Reduction with Null Subtraction Imaging Zhengchang Kou, et al. University of Illinois Urbana-Champagin	1471: Microbubble Detection with Adaptive Beamforming in Ultrasound Localisation Microscopy Alexandre Corazza, et al. Creatis	2232: In Vivo Validation of Modulated Acoustic Radiation Force (mARF) Based Imaging in Murine Models of Abdominal Aortic Aneurysm (AAA) Using VEGFR-2 Targeted Microbubbles Yi Huang, et al. University of Virginia

B2P-10: MBB - Beamforming II			
Chair(s): Alessandro Ramalli (University of Florence)			
W1.1	W1.2	W1.3	
1258: Amplitude Modulation and Baseband Delay-	1342: Adaptive Beamforming for Wireless Powering of a	1877: Sound Speed Correction for Virtual Source	
Multiply-and-Sum Beamforming for Improved Vessel	Network of Ultrasonic Implants	Retrospective Transmit Beamforming	
Visualization with Volumetric Contrast-Enhanced	Max Wang, et al.	Anders Emil Vrålstad, et al.	
Ultrasound Imaging	Stanford University	NTNU	
Megan Yociss, et al.			
University of Texas at Dallas			
W1.4	W1.5	W1.6	
2229: Evaluation of Aperture and Apodization in a Delay-	2354: Accurate Prediction of Refraction Through Lensed	2370: K-Space Domain Spatial Filtering for Retrospective	
Multiply-and-Sum Reconstruction Algorithm for	Row-Column Addressed Arrays	Transmit Beam Focusing/Shaping and Per-Element Data	
Synthetic Aperture Imaging	Sigrid Husebø Øygard, et al.	Estimation from Arrays with Microbeamforming	
Philip Holmes, et al.	Technical University of Denmark	Junseob Shin, et al.	
Mayo Clinic Graduate School of Biomedical Sciences		Philips Research North America	
W1.7	W1.8	W1.9	
2479: 3D Synthetic Aperture Imaging with Aperiodic	2538: Mixed Imaging Sequences for Enhanced	2555: Cross-Plane Scanline Imaging with 2D Sparse	
Sparse Arrays and Aperiodic Orthogonal Codes	Spatiotemporal Resolution	Costas Arrays	
Tarek Kaddoura, et al.	Blake Herrema, et al.	Mohammad Hadi Masoumi, et al.	
University of Alberta	University of Colorado Boulder	University of Alberta	
W1.10	W1.11	W1.12	
2574: Learnable Regularization via Padé Activation Units	2580: Computational Speed and Efficiency of Ultrasound	2197: Broadband Multiple-Focus Synthesis Using	
for Flexible Model-Based Beamforming	Beamformers in Frequency Domain	Orthogonal Frequency Division Multiplexing	
Christopher Khan, et al.	Marko Jakovljevic, et al.	Collin Smith, et al.	
Vanderbilt University	Stanford University	University of Minnesota	

B2P-11: MBF - Contrast-free microvascular imaging II					
Chair(s): Thomas Deffieux (Physics for medicine - Paris)	Chair(s): Thomas Deffieux (Physics for medicine - Paris)				
W2.1	W2.2	W2.3			
1112: Coronary Microvascular Perfusion Patterns	2050: Hemodynamic Change Monitoring and Lesion Size	2127: Brain-Wide Vascular Resistivity Mapping via			
Assessed by Ultrafast Power Doppler Are Dependent on	Prediction Following Stroke by Ultrafast Doppler Imaging	Ultrafast Doppler in the First Weeks of Life in Human			
Congenital Heart Disease and Impacted by Cardiac	Shih-Ya Huang, et al.	Neonates Differentiates the Effects of Vessels Diameter			
Surgery	Department of Biomedical Imaging and Radiological Science,	and Region			
Minh Nguyen, et al.	China Medical University, Taichung	Flora Faure, et al.			
Hospital for Sick Children, University of Toronto		Physics for medecine, INSERM, ESPCI Paris, CNRS, PSL University			
W2.4	W2.5	W2.6			
2347: Multiparametric Microvascular Ultrasound to	2367: Evaluation of Treatment Response in	2475: Visualizing Perfusion Throughout the Cardiac			
Classify Tumor Sensitivity to Anti-Angiogenic Treatment:	Chorioallantoic Membrane Patient Derived Tumor Model	Cycle Using Advanced Power Doppler Acquisition and			
Application to Multiple Cell Lines	Using Micro Ultrasound and Speckle Variance	Filtering Methods			
Mahsa Bataghva, et al.	Sara Mar, et al.	Abbie Weeks, et al.			
Western University	University of Toronto	Vanderbilt University			

W2.7	W2.8	
2476: Correlation Between Ultrafast Power Doppler	2550: Microvessel Network Mimicking Phantoms for	
Imaging and Rheumatoid Arthritis Disease Severity	Evaluation of Microvasculature Imaging Techniques	
Kuo-Lung Lai, et al.	Shaheeda Adusei, et al.	
National Taiwan University	Mayo Clinic College of Medicine and Science	L

B2P-12: MCA - Contrast agents, drug delivery and cavitation					
	Chair(s): Helen Mulvana (University of Strathclyde), Alfred Yu (University of Waterloo)				
W3.1 1059: Ultrafast Feedback Control of Stable Cavitation	W3.2 1061: Improving Temporal Distribution of Stable	W3.3 1080: Nanobubbles Are Non-Echogenic for Fundamental-			
Induced by Rapid Short-Pulse Ultrasound	Cavitation Intensity Using a Controller Based on Real-	Mode Contrast-Enhanced Ultrasound Imaging			
Chunjie Tan, et al. Shanghai Jiao Tong University	Time Intensity Detection Pengcheng Wang, et al.	John Myers, et al. <i>University of Colorado</i>			
, , , , , , , , , , , , , , , , , , ,	Shanghai Jiao Tong University	,			
W3.4	W3.5	W3.6			
1510: Ring Array Passive Acoustic Mapping Using	1619: The Effect of Fluid Flow Conditions on Ultrasound-	1973: Cross-Scale Transcranial Nonlinear Contrast-			
Hybrid Heterogeneous Angular Spectrum Method	Assisted Endothelial Cell Membrane Permeabilization	Enhanced Power Doppler Plane Wave Imaging with High			
Hui Zhu, et al.	Elahe Memari, et al.	Contrast-to-Tissue Ratio and Sensitivity			
ShanghaiTech University	Concordia University	Hanbing Chu, et al.			
		Xi'an Jiaotong University			
W3.7	W3.8	W3.9			
2169: 3D Subharmonic Aided Pressure Estimation for	2284: Monodispersity Increases the Adhesion Efficiency	1913: Microbubbles for Blood-Brain Barrier Opening:			
Characterizing Indeterminate Breast Mass	and Specificity of Cloaked Ligand RGD-Microbubbles	from In Vitro to In Vivo			
Mehnoosh Torkzaban, et al.	Jair Castillo, et al.	Ambre Dauba, et al.			
Thomas Jefferson University	University of Colorado Boulder	Université Paris-Saclay			
W3.10					
2107: Pro-Angiogenic Stimulation by microRNA-126-					
Conjugated Microbubbles					
Stephanie He, et al.					
Concordia University					

B2P-13: MEL - Elastography Applications - Eye, Brain, and Muscle Chair(s): Javier Brum (Universidad de la Republica), Mostafa Fatemi (Mayo Clinic)				
W4.1 1081: Anisotropic Imaging for Evaluating Human Musculoskeletal Properties via Dual-Directions Shear Wave Imaging Guo-Xuan Xu, et al. National Cheng Kung University	1081: Anisotropic Imaging for Evaluating Human Musculoskeletal Properties via Dual-Directions Shear Wave Imaging Guo-Xuan Xu, et al. 1111: Anisotropic Nonlinear Shear Elasticity Quantification in Ex Vivo Muscles Ha Hien Phuong Ngo, et al. BioMaps 1219: The Viscoelasticity and Fluidity of the Brain Tumors for Ultrasound Assessment Using the Unidirectional Transcranial Shear Waves at the Variable Low Frequencies			

W4.4 1310: Quantification of In Vivo Muscle Elastic Anisotropy Factor by Steered Push Beams Ha Hien Phuong Ngo, et al. BioMaps	W4.5 2188: A Simulation Based Approach for Shear Wave Attenuation Quantification in Transverse Isotropic Tissues: Preliminary Results Eliana Budelli, et al. Instituto de Ingeniería Química. Facultad de Ingeniería. UdelaR	W4.6 2221: Surface Wave Dispersion Approach for Estimating the Viscoelastic Properties of the Crystalline Lens Hongqiu Zhang, et al. University of Houston
W4.7 2257: In Vivo Assessment of Mouse Brain Mechanical Properties Using Single Transducer – Harmonic Motion Imaging with Multi-Frequency Excitation Pulse Md Murad Hossain, et al. Columbia University	W4.8 2342: Factors Affecting SV Mode Shear Wave Propagation in Elastic, Incompressible, Transversely Isotropic Materials in Both 2D and 3D Using Ultrasonic Rotational 3D SWEI Anna Knight, et al. Duke University	W4.9 2361: Simultaneous Assessment of Whole Eye Biomechanics Using Ultrasonic Elastography Runze Li, et al. University of Southern California
W4.10 2571: Quantitative Ultrasound Bladder Vibrometry for Detrusor Pressure Estimation: Preliminary Results for In Vivo Human Bladders David Rosen, et al. Mayo Clinic College of Medicine and Science	W4.11 1204: Measurement of Crystalline Lens Elasticity by Shear Wave Elastography for the Monitoring of Presbyopia Ultrasonic Cavitation Treatment Alice Ganeau, et al. LabTAU, INSERM	W4.12 1730: Quantitative Assessment of Median Nerve Transverse Mobility Using Ultrasound Strain Imaging During Decomposed Hand Gestures at Functional and Compressional Wrist Angles Yuchen Tang, et al. The University of Hong Kong
W4.13 2008: Development of a Non-Invasive Ultrasonic Method to Measure the Mechanical Properties of Skin Zülal Kizilaslan, et al. Eindhoven University of Technology		

B2P-14: MEL - Viscoelasticity and Shear Wave Propagation			
Chair(s): Piotr Kijanka (AGH University of Science and Technology)			
W5.1	W5.2	W5.3	
1054: Shear Wave Viscoelastography with Single-Track	1095: In Vivo Shear Wave Attenuation Measurements	1562: Between-Visit Reproducibility of Shear Wave	
Location Maximum a-Posteriori Probability (STL-MAP)	with an Improved Frequency-Shift Method: Duck Liver	Viscoelastography for Diffuse Liver Disease Imaging	
Spectroscopy	Experiments	Sathiyamoorthy Selladurai, et al.	
Siladitya Khan, et al.	Ladan Yazdani, et al.	University of Montreal Hospital	
University of Rochester	University of Montreal Hospital		
W5.4	W5.5	W5.6	
1614: Parametric Study of Renal Allograft Biopsy-Based	2273: Nonlinear Least-Squares Estimation of Shear Wave	2424: Propagation of Shear Wave in Elastography Using	
Shear Wave Motion Simulations	Speeds in Viscoelastic Media	Physics-Informed Neural Network	
Luiz Vasconcelos, et al.	Nicholas Bannon, et al.	Yanjun Xie, et al.	
Mayo Clinic	Michigan State University	University of Virginia	
W5.7	W5.8	W5.9	
2460: An Open-Source Radon-Transform Shear Wave	2268: Fractional Calculus Models for Shear Wave	2384: Ultrasound Shear Wave Elastography and Shear	
Speed Estimator with Masking Functionality to Isolate	Parameter Estimation	Wave Dispersion Imaging for the Diagnosis and Staging	
Different Shear-Wave Modes	Robert McGough, et al.	of Hepatic Fibrosis	
Felix Jin, et al.	Michigan State University	Mehnoosh Torkzaban, et al.	
Duke University		Thomas Jefferson University	

B2P-15: MIM - New Imaging Techniques II			
Chair(s): Tai-kyong Song (Sogang University), Xiaoming Zhang (Mayo Clinic)			
W6.1	W6.2	W6.3	
1300: Real Time Implementation of Sound Speed	1671: Current Source Density Reconstruction of	1691: Clinical Validation of Manually Registered	
Estimation for Portable Ultrasound System	Acoustoelectric Images by Regularized Inverse Filtering	Ultrasound Volumes of the Shoulder	
Yewon Lee, et al.	Jinbum Kang, et al.	Ahmed Sewify, et al.	
Sogang University	University of Washington	QUT	
W6.4	W6.5	W6.6	
1695: Ultrasound Pulse Waveform Modulation with	1745: Portable Cavitation Monitoring System with Real-	1865: PDMS Composites with Photostable NIR Dyes for	
Gauss Window for Acoustoelectric Imaging	Time Imaging of PAM-Mode Image Superimposed on B-	B-Mode Ultrasound Imaging	
Haipeng Yuan, et al.	Mode Image	India Lewis-Thompson, et al.	
Tianjin University	Hyae Eun Lee, et al.	University College London	
	Sogang University		
W6.7	W6.8	W6.9	
2398: Transcranial Acoustoelectric Imaging of Spatially	1410: Detection of the Cardiac Mechanical Activation	1411: High Frame Rate Speckle Tracking Algorithm	
and Temporally Varying Electrical Currents to Better	Sequence Using High Frame Rate Speckle Tracking	Towards a Real-Time Implementation	
Understand Neuronal Dysfunction	Echocardiography	Marta Orlowska, et al.	
Teodoro Trujillo, et al.	Konstantina Papangelopoulou, et al.	KU Leuven	
University of Arizona	Katholieke Universiteit Leuven		
W6.10	W6.11	W6.12	
2212: Using 3D Printed Structures to Evaluate the	2445: Subharmobnic Scattering of Sonazoid	2504: Improving Strain Imaging Accuracy by Employing	
Potential Causes of the Color Doppler Twinkling	Microbubbles for Evaluating Tumor Interstitial Fluid	a Displacement Point-Tracking Quality Metric	
Signature	Pressure in Mice	Jad El Harake, et al.	
Benjamin Wood, et al.	Yun Wang, et al.	Columbia University Department of Biomedical Engineering	
Mayo Clinic	Shenzhen Institutes of Advanced Technology		

B2P-16: MIS - Segmentation and Classification			
Chair(s): Massimo Mischi (Einhoven University of Technology)			
W7.1	W7.2	W7.3	
1236: Calibrating Acquisition-Related Data Mismatches	1024: Detection of Hematoma Boundaries in Transcranial	1237: Deep Learning Based Segmentation for	
by Using Transfer Functions	Ultrasound Brain Imaging via Envelope Reconstruction	Assessment of Fractional Limb Volume in 3D Fetal	
Ufuk Soylu, et al.	on Resonance-Based Signal Decomposition	Ultrasound Imaging	
University of Illinois Urbana-Champaign	Aryaz Baradarani, et al.	Rohit Pardasani, et al.	
	Tessonics Medical Systems	GE Healthcare	
W7.4	W7.5	W7.6	
1399: The Response of Prefrontal and Parietal Lobes to	1517: Detection of Spine Curve and Vertebral Level on	2109: Deep Reinforcement Learning of Kelvin-Voigt	
Acoustoelectric Signal	Ultrasound Images Using DETR	Fractional Derivative Parameters for Viscoelastic	
Peishan Huang, et al.	Yiwen Tang, et al.	Imaging	
Tianjin University	ShanghaiTech University/School of Information Science and	Yan Zhou, et al.	
	Technology	Xi'an Jiaotong University	

W7.7 2245: Cervix Ultrasound Texture Analysis to Differentiate Between Term and Preterm Birth Pregnancy: A Machine Learning Approach David Bustamante, et al. Wayne State University	W7.8 1008: Triaging Subjects with Palpable Breast Masses for Biopsy, Follow-Up or Treatment Using Al Applied to Breast Ultrasound in a Low-Resource Setting - A Feasibility Study Jhimli Mitra, et al. GE Research	W7.9 1421: 3D GaN-Generated Synthetic Paired Ultrasound and Label Data: A 3D Segmentation Application Case Cristiana Tiago, et al. GE Vingmed Ultrasound AS
W7.10 2390: Machine Learning for Liver and Tumor Segmentation in Ultrasound Based on Labeled CT and MRI Images Laurent Man, et al. University of Massachusetts		

B2P-17: MIS - Image Enhancement II		
Chair(s): Marie Muller (North Carolina State University), Ewen Carcreff (DB-SAS / TPAC)		
W8.1	W8.2	W8.3
2034: Motion Tracking of the Left Ventricle in High-	1018: Unsupervised Deep Learning Based Speckle	1386: Interpretable Singular Value Decomposition Clutter
Frame-Rate Echocardiography for Ejection Fraction	Reduction Technique: Preliminary Study	Filtering in High Frame-Rate Ultrasound Imaging
Estimation Based on Unsupervised Deep Learning: An In	Dongkyu Jung, et al.	Andong Wang, et al.
Vitro and In Vivo Feasibility Study	DGIST	The University of Hong Kong
Zhikai Ruan, et al.		
Xi'an Jiaotong University		
W8.4	W8.5	W8.6
1822: Zero-Shot Learning for Real-Time Ultrasound	2025: Enhanced Wiener and Kuan Filters Applied with	2360: Adaptive Spatiotemporal SVD Clutter Filtering in
Image Enhancement	Adaptive Beamformers for Improved Contrast and	Cardiac Blood Flow Imaging with Diverging Waves
Yuxuan Li, et al.	Resolution in Ultrafast Ultrasound Images	Ehsan Jafarzadeh, et al.
Tsinghua University	Larissa Comar Neves, et al.	Sunnybrook Research Institute
	Federal University of Technology	
W8.7	W8.8	W8.9
2561: ROI-Free Assessment of In-Vivo Clutter with	2547: Blind Phase-Aberrated Baseband Point Spread	1868: CNN-Based Tightening of Speckle Patterns in
Feature Extraction and the Earth Mover's Distance	Function Estimator Using Complex-Valued Convolutional	Ultrasound Imaging: A Feasibility Study
Ying-Chun Pan, et al.	Neural Network	Dimitris Perdios, et al.
Vanderbilt University	Yu-An Lin, et al.	École polytechnique fédérale de Lausanne (EPFL)
	National Tsing Hua University	

B2P-18: MPA - Photoacoustic Signal and Image Processing Chair(s): Michael Kolios (Ryerson University), Stanislav Emelianov (Georgia Institute of Technology and Emory University School of Medicine)			
W9.1 W9.3			
1049: A Photoacoustic Spectrum Feature Extraction	1283: Deep Learning Assisted Photoacoustic Image	1358: Photoacoustic Image Analysis of Sub-Resolution	
Method to Characterize the Hydroxyapatite Degradation	Enhancement Using In Vivo Ground Truths Based on	Changes in Collagen Fiber Bundle Thickness During the	
Process in Cortical Bone	Photoacoustic Fluctuation Imaging	Progression of Pelvic Organ Prolapse	
Boyi Li, et al.	Ivana Falco, et al.	Andrew Markel, et al.	
Fudan University	Univ. Grenoble Alpes, CNRS, LIPhy	Tulane University	

W9.4 1575: Experimental Evaluation of a 3-D Fully Convolutional Network for Learning Blood Oxygenation Saturation Using Photoacoustic Imaging Jiaqi Zhu, et al. University College London	W9.5 1976: An Effective Blind Unmixing Approach for Plaque Decomposition Based on Multispectral Photoacoustic Imaging Camilo Cano, et al. Eindhoven University of Technology	W9.6 1983: Analysis of Abdominal Aortic Aneurysm Thrombus Using Multispectral Photoacoustic Imaging Rick van Bergen, et al. Eindhoven University of Technology
W9.7 2305: Adaptive Photoacoustic Beamforming Algorithms for Blood Oxygen Saturation Estimation Rashid Al Mukaddim, et al. University of Wisconsin - Madison	W9.8 2341: Numerical Investigation of Multiple Scattering Caused by Temporal Bone in Transcranial Photoacoustic Imaging Fatemeh Hosseini, et al. Tarbiat Modares University	W9.9 2409: Automatic Search for Photoacoustic Marker Using Transrectal Ultrasound Actuator Hamid Moradi, et al. University of British Columbia
W9.10 2501: Spectral System Denoising in Spectroscopic Photoacoustic Neuroimaging Jeeun Kang, et al. Johns Hopkins University	W9.11 1058: Accelerating Model-Based Photoacoustic Image Reconstruction In Vivo Based on s-Wave Yuting Shen, et al. ShanghaiTech University	W9.12 1116: PAFormer: Photoacoustic Reconstruction via Transformer with Mask Mechanism Juze Zhang, et al. ShanghaiTech University
W9.13 1644: Deep Learning Based Approach for Multi- Perspective Photoacoustic Imaging Navchetan Awasthi, et al. Eindhoven University of Technology	W9.14 1670: Multi-Perspective Approach for Photoacoustic Imaging Based on Multiple Spatially Separated CMUTs on an Array Amir Gholampour, et al. Eindhoven University of Technology	W9.15 2524: Beyond SAF: Deconvolution-Based Elevation Resolution Enhancement for Linear Array-Based Three- Dimensional Photoacoustic Imaging Yichuan Tang, et al. Worcester Polytechnic Institute

B2P-19: MSD - Ultrasound Devices, Systems and Methods II Chair(s): Holly Lay (Fujifilm Visualsonics), Pengfei Song (University of Illinois)		
W10.1 1565: A Robust Backscatter Modulation Scheme for Continuous Ultrasound Data Transfer from Deep Implants Lukas Holzapfel, et al. Fraunhofer Institute for Reliability and Microintegration IZM	W10.2 1881: A Novel Two-Element Scanner for High-Frequency Ultrasound Imaging Anudeep Vayyeti, et al. IIT Madras	W10.3 1972: WULPUS: A Wearable Ultra Low-Power Ultrasound Probe for Multi-Day Monitoring of Carotid Artery and Muscle Activity Sebastian Frey, et al. ETH Zurich
W10.4 1982: Diverging Polymer Lens Design and Fabrication for Row-Column Array Transducers (1998) Melanie Audoin, et al. DTU Health Tech	W10.5 2063: An Autonomous Electronics System for Ultrasound Energy Transfer and Passive Acoustic Communication Marc Fournelle, et al. Fraunhofer IBMT	W10.6 2080: Vessel Navigation for Single Beam Ultrasound Doppler Using Transparent Transducer and Optics Hwanseung Yu, et al. Sungkyunkwan University
W10.7 2177: Morphometrics of Samples Obtained with Ultrasound-Enhanced Fine-Needle Aspiration Biopsy Ona Westerlund, et al. Medical Ultrasonics Laboratory (MEDUSA), Aalto University	W10.8 2399: A Photoacoustic Framework for Predictions of Generalized Contrast-to-Noise Ratios in Frame-Averaged Images Mardava Gubbi, et al. Johns Hopkins University	W10.9 2452: Combined Ultrasound, Photoacoustic, and Elasticity Imaging on the Vevo F2 Imaging System Xinyue Huang, et al. Georgia Institute of Technology

W10.10	W10.11	
1927: 2D Shear Wave Elastography Implementation on a	2453: Design of a Transimpedance Amplifier for a Dual	
Portable Research Ultrasound System – Initial Results	Mode CMUT Based Transcranial Ultrasound System	
Damian Cacko, et al.	Reza Pakdaman Zangabad, et al.	
us4us sp. z o.o.	Georgia Institute of Technology	

B2P-20: MSR - Super Resolution Ultrasound V		
Chair(s): Gianmarco Pinton (University of North Carolina)	T 1944 0	1444.0
W11.1	W11.2	W11.3
1252: Automated Parameter Selection for Super-	1257: Ultrasound Super-Resolution Imaging for the	1456: Super Resolution Ultrasound Using Recursive
Resolution Image Processing Using Statistics of Fast	Differentiation of Thyroid Nodules: A Feasibility Study	Imaging of Highly Dense Scatterers
and Slow Time Sampling	Ge Zhang, et al.	Mostafa Amin Naji, et al.
Katherine Brown, et al.	China Resources & Wisco General Hospital	Center for Fast Ultrasound Imaging, Technical University of
University of Texas at Dallas		Denmark
W11.4	W11.5	W11.6
1532: Chirp-Coded Excitation for Ultrasound Localization	2024: Replacing the SVD Filter with a Correlation-Based	2149: Microvasculature Imaging of Mice Brain Through
Microscopy: A Phantom Study	Approach for Real-Time In Vivo ULM	High-Frequency Ultrasound Micro-Doppler Imaging with
Baptiste Pialot, et al.	Ryan DeRuiter, et al.	Background Noise Reduction and Vessel Enhancement
CREATIS, CNRS UMR 5220 – INSERM U1294 – Université	University of North Carolina at Chapel Hill/NCSU	Processing
Lyon 1 – INSA Lyon	·	Hung-Jui Chen, et al.
		National Cheng Kung University

B2P-21: MTC - Tissue Characterization - Cardiovascular and Cardiopulmonary II			
Chair(s): Michael Oelze (University of Illinois)			
W12.1	W12.2	W12.3	
1311: Estimation of Size of Red Blood Cell Aggregates	1368: Ultrasonic Backscatter Coefficient Analysis with	1534: Investigating Pulmonary Fibrosis and Edema in	
Using Reference Power Spectra	Clutter Filter for Ultrafast Blood Characterization	Rats Using Quantifying Ultrasound Multiple Scattering in	
Mototaka Arakawa, et al.	Masaaki Omura, et al.	Lung	
Tohoku University	University of Toyama	Roshan Roshankhah, et al.	
		North Carolina State University	
W12.4	W12.5	W12.6	
1557: In Vivo, Quantitative Ultrasound Assessment of	1802: Local Measurement of Instantaneous Change in	1920: Effects of Aging on Carotid Pulse Waveforms	
Pulmonary Fibrosis in Rats by Separate Analysis of	Myocardial Thickness in Swine Heart During Acute	Measured by Piezoelectric Sensor	
Single Scattering and Multiple Scattering Components	Myocardial Ischemia	Kazumasa Matsubara, et al.	
Theresa Lye, et al.	Yu Obara, et al.	Doshisha University	
Weill Cornell Medicine	Tohoku University		
W12.7	W12.8	W12.9	
1954: Multi-Perspective Puls/e Wave Velocity Imaging of	2157: Natural Shear Wave Estimation of Murine Hearts by	2397: Integrated Backscatter Versus Spectral Parameters	
Abdominal Aortic Aneurysm Phantoms	Using High Frequency Micro-Elastography	for In Vivo Estimation of Human Carotid Plaque	
Anouk van Heesch, et al.	Hsin Huang, et al.	Composition	
Photoacoustics and Ultrasound Laboratory Eindhoven	National Cheng Kung University	Sheronica James, et al.	
		Cleveland Clinic	

W12.10 2498: Propagation of Pulse Wave in an Idealized Stenotic Vessel with Heterogeneous Plaque in Simulated and Experimental Vessel Phantoms Nima Mobadersany, et al. Columbia University	W12.11 1454: Coronary Plaque Classification of Intravascular Ultrasound Images Based on a Multi-Stage Deep Classifier Cascades Xinze Li, et al. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences	W12.12 1511: Myocardial Attenuation Quantification for Diagnosis of Ischemic Heart Disease Young-Min Kim, et al. KAIST
W12.13 1623: Transmural Fiber Orientation and Tissue Strain Measurement with Ultrasound Imaging in Excised Myocardium Under Biaxial Tension John Cormack, et al. Department of Medicine, School of Medicine, University of Pittsburgh		

B2P-22: MTH - Therapy II		
Chair(s): Mathieu Pernot (ESPCI Paris), William Apoutou N'Djin (INSERM)		
W13.1	W13.2	W13.3
1032: Gene Expression Changes in Human Chronic	1247: Influence of Echogenic Liposomes on Histotripsy	1250: In Vivo Evaluation of Ultrasound-Triggered Release
Wound Tissue Treated with Low-Frequency (20 kHz),	Bubble Dynamics	from Novel Polymeric Spinal Device
Low-Intensity (100 mW/cm2, SPTP) Ultrasound	Aarushi Bhargava, et al.	Lauren Delaney, et al.
Olivia Ngo Boerman, et al.	University of Chicago	Thomas Jefferson University
Bucknell University		
W13.4	W13.5	W13.6
1625: Measuring Drug Release Induced by Thermal and	1707: Sonobiopsy for Sensitive Detection of	2030: Non-Invasive Generation of Hydrogel
Non-Thermal Effects of Ultrasound in a Nanodrug	Glioblastoma-Derived Circulating Tumor DNA	Microporosity Using Acoustic Droplet Vaporization
Delivery System	Jinyun Yuan, et al.	Mitra Aliabouzar, et al.
Tyler Hornsby, et al.	Washington University in St Louis	University of Michigan
Ryerson University		
W13.7	W13.8	W13.9
2045: Ultrafast Dynamics of Ultrasound-Induced	2136: Optimization of Focused Ultrasound Parameters	2270: Therapeutic Efficacy of PSMA-Targeted
Vaporization and Payload Release of Phase-Shift	for Modulating the Pancreatic Tumor Microenvironment	Nanobubble Cavitation Evaluated in a Rabbit Orthotopic
Emulsions	Jordan Joiner, et al.	Prostate Cancer Model
Mitra Aliabouzar, et al.	University of North Carolina at Chapel Hill	Eric Abenojar, et al.
University of Michigan		Case Western Reserve University

B2P-23: MTN - Image Guidance & Treatment Optimisation Chair(s): Virginie Papadopolou (University of North Carolina)		
W14.1	W14.2	W14.3
1343: Improved Treatment of Head and Neck Cancer	1449: Heterogeneous Angular Spectrum Method for	1666: Method for Aligning a HIFU Probe with a High-
Using 3-D Focused Ultrasound-Medicated Cetuximab	Trans-Skull Focused Ultrasound Simulation	Resolution Imaging Plane to Increase Treatment
Ryan Margolis, et al.	Tian-Yi Chao, et al.	Precision. Evaluation in an In Vivo Primate Model
University of Texas at Dallas	National Taiwan University	Sophie Cambronero, et al.
		LabTAU, INSERM

W14.4	W14.5	W14.6
1750: A GPU-Based HIFU Interference Canceling for	1940: Development of a Neuronavigation-Guided	2325: Characterization of the Imaging and Therapy
Real-Time Imaging-Guided Therapy	Sonobiopsy Device for Glioblastoma Patients	Performance of a Dual-Mode Pulsed-HIFU Probe
Junseong Kim, et al.	Lu Xu, et al.	Randall Williams, et al.
Sogang University	Washington University in St. Louis, McKelvey School of	University of Washington, Center for Industrial and Medical
	Engineering	Ultrasound
W14.7	W14.8	W14.9
2332: Theranostic Blood-Brain Barrier Opening in Non-	1878: 3D Localization of Cavitation Bubbles with a Two-	2071: Co-Sparse Registration of Photoacoustic and MRI
Human Primates Using a 500kHz Linear Array	Array Angular Spectrum Method Implementation	for Compensating Brain Shift in Neurosurgery
Robin Ji, et al.	Sarah Therre, et al.	Parastoo Farnia, et al.
Columbia University	Fraunhofer IBMT	Tehran University of Medical Sciences

B2P-24: NAI - Acoustic Imaging and Microscopy and NWP - Wave propagation Chair(s): Sevan Harput (London South Bank University, UK)		
W15.1 1105: Lamb Wave Propagation Analysis by Using Laser Doppler Vibrometer Weiyi Zuo, et al. Institute Of Acoustics, Chinese Academy Of Sciences	W15.2 2114: Lamb Wave Reflection and Transmission in Bent Steel Sheets Christoph Haugwitz, et al. Technische Universität Darmstadt	W15.3 1944: Evaluation of Epoxy Coating Quality Inside the Pipe Using High-Resolution Ultrasound Imaging and Scattering Analysis Honghyeon Ha, et al. SonicLab
W15.4 2294: Ultrasound Wrist Vein Pattern for Biometric Recognition Monica Micucci, et al. University of Basilicata	W15.5 2581: Resolution Improved Amplitude Steered Array Imaging with Time-Domain Delay Multiply and Sum Technique Cheng-Chih Hsiao, et al. National Tsing Hua University	

B2P-25: NDE – General NDE Methods II			
Chair(s): Yufeng Lu (Bradley University, USA)			
W16.1	W16.2	W16.3	
1041: Vibroacoustography Spectroscopy: Estimation of	1166: Localizing Fouling in Water-Filled Pipe with Laser-	1419: Delamination Detection of CFRP Plates with Lamb	
Porosity in Materials	Induced Non-Axisymmetric Guided Waves	Waves by an Elliptic Filter in Wavenumber-Domain	
João Uliana, et al.	Joonas Mustonen, et al.	Hui Zhang, et al.	
University of São Paulo	Electronics Research Lab., Dept. of Physics, University of	State Key Laboratory of Precision Measurement Technology	
	Helsinki	and Instrument, Tianjin University	
W16.4	W16.5	W16.6	
1425: Wideband Dispersion Reversal Based Corrosion	1676: Noninvasive Pressure Measurements Using	1697: Numerical Investigation of Unidirectional	
Inspection Using Fundamental Antisymmetric Lamb	Acoustic Resonance Spectroscopy	Generation of Circumferential SH Waves Applied to	
Waves	John Greenhall, et al.	Defect Detection in Pipe	
Feiyao Ling, et al.	Los Alamos National Laboratory	Lucas Martinho, et al.	
Fudan University	-	PUC-Rio	

W16.7	W16.8
1709: Debonding Quantification for Honeycomb	1743: PPM-EMAT Design Configurations for Ultrasonic
Sandwich Structure Based on Hexagonal Units	Communication Through Metallic Channel
Reconstruction Using Air-Coupled Ultrasonic C-Scan	Xin Huang, et al.
Hui Zhang, et al.	Illinois Institute of Technology
State Key Laboratory of Precision Measurement Technology	
and Instrument, Tianjin University, Tianjin	

B2P-26: NDE – General NDE Methods III		
Chair(s): Paul Wilcox (University of Bristol, UK)		
W17.1	W17.2	W17.3
1779: Identification of Delamination in Composite	1827: Detection and Visualization of Internal Defects in	1923: Investigation of Guided Wave Dispersion Curves of
Structure by Local Defect Resonance Technique	Shotcrete Specimens Using SSE Analysis Considering	Lithium-Ion Batteries at Different State of Charge Levels
Changyu Zhang, et al.	Local Noise for Noncontact Acoustic Inspection	Patrick Swaschnig, et al.
Xiamen University	Kazuko Sugimoto, et al.	Graz University of Technology
	Toin University of Yokohama	
W17.4	W17.5	W17.6
2083: Investigation of Machine Learning-Based Acoustic	2123: Simulation of Lamb Waves Excited by an Air-	2194: Assessment of the State of Health of Second-Life
2D Gas Pyrometer	Coupled Ultrasonic Phased Array for Non-Destructive	Lithium-Ion Batteries Using Quantitative Ultrasound
Fu-Sung Lin, et al.	Testing	Spectroscopy
National Cheng Kung University	Jan Hinrichs, et al.	Simon Montoya-Bedoya, et al.
	Technische Universität Darmstadt	Verasonics SAS, Medellín-Colombia
W17.7	W17.8	
2269: Operando State of Charge Tracking of Second-Life	2315: Adaptive Ultrasound Imaging Applied to Laser	
Lithium-Ion Batteries Using Quantitative Ultrasound	Brazed Joints	
Spectroscopy	Andrew Ouellette, et al.	
Simon Montoya-Bedoya, et al.	Institute for Diagnostic Imaging Research, University of	
Verasonics SAS. Medellín-Colombia	Windsor	

B2P-27: PMI - Modelling and Inversion II Chair(s): Koen van Dongen (Delft University of Technology)		
	W18.2 1164: FEM-Simulations of Tailored 3D Pressure Fields for Us-Assisted Oleogel Crystallization Oskari Tommiska, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	W18.3 1176: BEM-FEM Simulation of Acoustic Levitation Dynamics with Phased Arrays Marika Sirkka, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki
W18.4 1177: FEM Simulations of the Effects of Fouling Deposits on Laser-Generated Lamb Waves Joonas Suorsa, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	W18.5 1347: Reconstruction of Fouling Distribution from Aggregate Observations Denys lablonskyi, et al. Electronics Research Lab., University of Helsinki	W18.6 1860: Ultrasound Full-Waveform Inversion for In-Vivo Whole-Body Slice Imaging of a Mouse Ines Elisa Ulrich, et al. ETH Zurich

W18.7	W18.8	W18.9
1909: Dependency of Apparent Anisotropic Thermal	1912: Generalized Inverse Problems in Resonant	2013: A Fast Simulation Method for Lamb Wave
Diffusivity on Elastic Anisotropy in Cubic Single Crystals	Ultrasound Spectroscopy	Propagation in Coupled Non-Parallel Plates
from Transient Grating Spectroscopy	Juraj Olejňák, et al.	Håvard Kjellmo Arnestad, et al.
Jakub Kušnír, et al.	Institute of Thermomechanics of the CAS, v. v. i.	University of Oslo
Institute of Thermomechanics of the CAS, v. v. i.		
W18.10	W18.11	W18.12
2044: Automating Regularization Parameter Selection of	2148: Using Uncertainty to Estimate Imaging Errors	2266: Numerical Spatial Impulse Response Calculations
the Inverse Problem in Ultrasound Tomography	Induced by Approximate Reconstruction Physics	for a Circular Piston Radiating in a Lossy Medium
Anita Carević, et al.	Oscar Bates, et al.	Drew Murray, et al.
University of Split	Imperial College London	Michigan State University
W18.13	W18.14	
2335: Multimodal Exponentially-Modified Gaussian	2417: Acoustical and Optical Compensation for Spectral	
Oscillators	Unmixing of Sulfates Using Ultrasound and	
Christopher Hahne, et al.	Photoacoustic Tomography: In Silico and In Vitro	
University of Bern	Results	
	Alexander Pattyn, et al.	
	Wayne State University	

B2P-28: POA/PNR - Opto-Acoustics and Non-Reciprocal Acoustics		
Chair(s): Vincent Laude (FEMTO-ST / CNRS)		
W19.1	W19.2	W19.3
1083: Non-Reciprocity Within Piezoelectric	1338: Schlieren Visualization of Anisotropic Dual Slanted	1785: Unipolar Back-Projection Algorithm for
Micromechanical Resonator Chains	Plate Mesoscale Lens Action for Ultrasound	Photoacoustic Tomography
Jianing Zhao, et al.	Eetu Lampsijärvi, et al.	Soheil Hakakzadeh, et al.
University of Illinois at Urbana-Champaign	Electronics Research Lab., Dept. of Physics, University of	Sharif Univ. of Tech.
	Helsinki	
W19.4		
1991: Brillouin Spectroscopy Characterization of Unfiled		
Tetragonal Tungsten-Bronze Ferroelectrics in a Wide		
Temperature Range		
David Mareš, et al.		
Institute of Thermomechanics of the Czech Academy of		
Science		

B2P-29: PTF - Thin Films II		
Chair(s): Vincent Laude (FEMTO-ST / CNRS)		
W20.1	W20.2	W20.3
2351: Quasi-Shear Mode Electromechanical Coupling	2559: Improvement of Electromechanical Coupling	2583: Weighted Electrodes Configuration for
Coefficient of c-Axis Tilted MgZnO Thin Films	Coefficient of Piezoelectric LiNbO3 by Doping	Electromechanical Coupling Enhancement of S0 Mode
Yohkoh Shimano, et al.	Praseodymium	Resonator Based on Y36 Cut LiNbO3 Thin Film
Waseda University, ZAIKEN	Kae Nakamura, et al.	Yushuai Liu, et al.
	Waseda University	Shanghaitech University

B2P-30: PUM - Ultrasonic Motors and Actuators Chair(s): Vincent Laude (FEMTO-ST / CNRS)		
W21.1 1268: Frequency Modulated, Air-Coupled Ultrasound Generated by Fluidic Oscillators Christoph Strangfeld, et al. BAM	W21.2 1273: Investigation of Acoustic Underwater Propulsion with 36° Y-Cut Lithium Niobate Transducer Takumi Hirata, et al. Muroran Institute of Technology	W21.3 2145: Evaluation of Preload Mechanism for Micro Cryogenic Actuator Without Bolt-Clamping Takefumi Kanda, et al. Okayama University
W21.4 2478: Sensitivity Enhanced High Frequency pMUT with 3rd Order Flexural Mode Using LN Thin Film Kangfu Liu, et al. Shanghaitech University		

B2P-31: ASE - Sensors		
Chair(s): Ausrine Bartasyte (University of Franche-Comté)		
W22.1	W22.2	W22.3
1303: Innovative NiAl Electrodes for Long Term, High	1323: Temperature and Dynamic Strain Measurements	1951: Decoupling of Humidity and Temperature Effects
Temperature SAW Sensing Applications Based on	Using a Single SAWR Sensor	with a Single Solidly Mounted Resonator Sensor
Lithium Niobate	David Leff, et al.	Jose Manuel Carmona-Cejas, et al.
Jordan Maufay, et al.	University of Maine	GMME-CEMDATIC-ETSI de Telecomunicación. Universidad
LMOPS	·	Politécnica de Madrid
W22.4		
2334: Optimization of a Material Stack for High-		
Temperature SAW Sensor: Towards 2.45GHz Wireless		
Devices		
Arthur De Sousa Lopes Moreira, et al.		
ENSMM/Femto-St Institute		

B2P-32: AMS - MEMS		
Chair(s): Ausrine Bartasyte (University of Franche-Comté)		
W23.1	W23.2	W23.3
1124: Differential LGS Grooved Resonators with Linear	1350: Near-Spurious-Free Lithium Niobate Resonator for	1467: Four-Leaf Clover Shaped Phononic Crystals for
Temperature-Frequency Relation	Piezoelectric Power Conversion with Q of 3500 and kt ² of	Quality Factor Improvement of AIN Contour Mode
Qingchuan Shan, et al.	45%	Resonator
Shanghai Jiao Tong University	Kristi Nguyen, et al.	Ping-Jing Chen, et al.
	The University of Texas at Austin	UESTC
W23.4	W23.5	W23.6
1505: 5 GHz Lamb Wave Wi-Fi Channel Filters	1634: Spurious Modes Metric Definition for Machine	1740: First-Order Shear Horizontal Mode Resonators
Alexandre Reinhardt, et al.	Learning Aided MEMS Design	Design of High kt ² Based on LiNbO3 Thin Film
Univ. Grenoble Alpes, CEA, LETI	Luca Colombo, et al.	Yushuai Liu, et al.
	Northeastern University	Shanghaitech University

Wednesday, October 12: Posters (Casinó Level 3)

W23.7 1842: High-Q A0 Mode Plate Wave Resonator on X-Cut LiNbO3 Film with Dummy Electrode Arrays Qinwen Xu, et al. Wuhan University	W23.8 2023: Compact Footprint µs Spiral Delay Lines Using GaN-on-SiC Phononic Integrated Circuits Mahmut Bicer, et al. University of Bristol	W23.9 2097: Surface Cavity Wave Structures for Ultra-Compact Radio Frequency Filters Eric Michoulier, et al. frecnsys a Soitec company
W23.10 2500: Gigahertz Metamaterial Ultrasonic Lens Characterization Using GHz CMOS Integrated Ultrasonic Micro Imager Juneho Hwang, et al. Cornell University		

B2P-33: TMI - Medical Imaging and Therapeutic Transducers			
Chair(s): Christine Démoré (University of Toronto) W24.1 1509: Performance Comparison Between Single Layer and Several Configurations of Bilayer P(VDF-TrFE) Transducers in Pulse-Echo Measurements Sean Toffessi Siewe, et al.	W24.2 1733: Comparison of Waveform Modulation Methods Used in Pattern Interference Radiation Force Neuromodulator Young Hun Kim, et al.	W24.3 1961: Development of a Dual-Mode Imaging Catheter for Peripheral Intravascular Imaging Weicen Chen, et al. Shenzhen Institutes of Advanced Technology	
GREMAN, UMR 7347, University of Tours, CNRS, INSA CVL, Tours W24.4	Hanyang University W24.5	W24.6	
2057: Fabrication and Characterization of Flexible Ultrasonic Array Transducers Based on Sol-Gel Composite Spraying Technique Masayuki Tanabe, et al. Kumamoto University	2311: Evaluation of PZT-5A, PZT-5H, Pz39, Pz54 and PMN-38 Piezoelectric Ceramics for Use in Miniature Histotripsy Transducers Matthew Mallay, et al. Dalhousie University	2408: Inter-Element Variation in Acoustic Performance for a 256-Element Open-Source Ultrasound Tomography System Morgan Roberts, et al. Biomedical Ultrasound Group, University College London	
W24.7 2415: A Dual-Frequency Intravascular Ultrasound Transducer for Amplified Nanodroplet Vaporization Effects in Cavitation-Enhanced Sonothrombolysis Sunho Moon, et al. North Carolina State University	W24.8 2429: Millisecond-Level Transient Temperature Monitoring Using an Ultra-Fast Response Thermocouple for Ultrasound-Induced Thermal Strain Imaging Mengyue Chen, et al. North Carolina State University	W24.9 2570: Boundary Array Transducer with Elongated Elements Jesse Yen, et al. University of Southern California	
W24.10 1226: Automated Characterization of Matrix Transducer Arrays Using the Verasonics Imaging System Djalma Simões Dos Santos, et al. Delft University of Technology			

Wednesday, October 12: Posters (Casinó Level 3)

B2P-34: TMU - Micromachined Ultrasonic Transducers II		
Chair(s): Erik Vilain Thomsen (DTU)	I MOS O	MOE 2
W25.1	W25.2	W25.3
1027: A Time-of-Flight (ToF) Estimation Algorithm for	1159: Combined Use of Fresnel Lens and Holey-	1327: PMUT Structure Design with a Scar Free "MIS"
Ranging Using Silicon-on-Nothing pMUTs	Structured Metamaterial to Obtain Beam Focus Far from	Process on (111) Silicon Wafer
Mantalena Sarafianou, et al.	Ultrasound Source	Sheng Wu, et al.
Institute of Microelectronics	Francesc Torres, et al.	Shanghai Institution of Microsystem and Information
	Universitat Autònoma de Barcelona	Technology
W25.4	W25.5	W25.6
1477: CMUT-Based Gas Sensor with Inkjet-Printed	1522: Air-Coupled Capacitive Micromachined Ultrasonic	1630: Resonance-Enhanced Fluid Density Sensing by
Functionalization Layer	Transducer for Temperature Field Reconstruction	Piezoelectric Micromachined Ultrasonic Transducers:
Dovydas Barauskas, et al.	Yongshuai Ma, et al.	Proof of Concept
Kaunas University of Technology	State Key Laboratory of Precision Measurement Technology	Lixiang Wu, et al.
	and Instruments, Tianjin University	Silicon Austria Labs
W25.7	W25.8	W25.9
1649: Matching-Network Boosting Enabling	1682: An Electrical-Feedback Based Bandwidth	1829: Extreme Value Analysis of the Impact of the
Reconfigurable pMUTs for IoT Sensor Node Applications	Extension Technique of Piezoelectric Micromachined	Effective Gap Tolerance on the Acoustic Transmit and
Gabriel Giribaldi, et al.	Ultrasonic Transducers for Airborne Application	Receive Performance of Reverse-CMUT Arrays
Northeastern University	Tingzhong Xu, et al.	Monica La Mura, et al.
	Silicon Austria Labs GmbH	University of Salerno
W25.10	W25.11	W25.12
1837: Modeling, Identification and Operation of Air-	1885: Ultrasound Transmission Through the Back	1995: Passive Temperature Compensation of
Coupled PMUTs in Non-Linear Regime	Cavities of Piezoelectric Micromachined Ultrasonic	Piezoelectric Micromachined Ultrasonic Transducers
Marco Passoni, et al.	Transducer (PMUT) Arrays	(PMUTs)
STMicroelectronics	Alessandro Stuart Savoia, et al.	Cyril Baby Karuthedath, et al.
	Roma Tre University	VTT Technical Research Centre of Finland
W25.13	•	
2532: Correlation of Wafer-Scale Film Stress Effects on		
ScAIN pMUT Parameters		
David Sze Wai Choong, et al.		
Institute of Microelectronics, Agency for Science, Technology		
and Research		

Wednesday, October 12: Posters (Casinó Level 3)

B4P-10: Ultra-SR Challenge (E-Posters Only) – THESE WILL NOT BE DISPLAYED IN THE POSTER HALL. Chair(s): Vassilis Sboros (HWU)				
2599: Ultra-SR Challenge: Pengfei Song Research Laboratory at University of Illinois Urbana-Champaign Matthew R. Lowerison, et al. University of Illinois Urbana-Champaign	2600: Generative Adversarial Nets for Ultrafast Ultrasound Localization Microscopy Reconstruction Yihui Sui, et al. Academy for Engineering and Technology, Fudan University	2601: Super Resolution Ultrasound Imaging Using Deep Learning Based Micro-Bubble Localization Feixiao Long, et al. eSonic Image		
2602: Microbubble Detection with Neyman-Pearson Criterion in Ultrasound Localization Microscopy Alexandre Corazza, et al. creatis	2603: Robust Super-Resolution Ultrasound Microbubble Tracking with Optical Flow Guided Kalman Filter Su-lan Pu, et al. Southeast University	2605: Ultrasound Super-Resolution Microvascular Imaging via Gradient Depression Weighted Localization and Dynamically Constrained Generalized Label Multiple Bernoulli Tracking Methods Jiacheng Liu, et al. School of Life Science and Technology, Xi'an Jiaotong University		
2607: Transformer-Based Microbubble Localization Sepideh Khakzadgharamaleki, et al. Concordia University	2609: A Hybrid Deep Learning Pipeline for Improved Ultrasound Localization Microscopy Tristan Stevens, et al. Eindhoven University of Technology	2610: Analytic Optimization-Based Microbubble Tracking in Ultrasound Super-Resolution Microscopy Md Ashikuzzaman, et al. Concordia University		
2611: ULM with Window TV-L1 Denoising and Various Interpolation Method Bingze Dai, et al. University of Illinois Urbana-Champaign	2612: Modified Residual Dense Network Based Super- Resolution Localization Method for High Concentration Microbubbles Shizhe An, et al. School of Life Science and Technology,Xi'an Jiaotong University	2613: Optical Flow Assisted Super-Resolution Ultrasound Localization Microscopy Using Deep Learning Hyeon-Jik Lee, et al. KAIST		
2614: Detection Performance in Ultrasound Super- Resolution Imaging Iman Taghavi, et al. Technical University of Denmark (DTU)	2615: Super-Resolution Imaging Framework: Sparsity-Based Deconvolution and Multi-Feature Tracking Jipeng Yan, et al. Imperial College London	2616: Super-Resolution Ultrasound Microbubble Tracking via a Color Histogram Based Particle Filter Fengling Meng, et al. Xiamen University		
2617: A General Deep Learning Model for Ultrasound Localization Microscopy Renxian Wang, et al. The University of Hong Kong	2618: Transformer for Ultrafast Ultrasound Localization Microscopy Gaobo Zhang, et al. Fudan University	2619: MR for ULTRA-SR: Improved Localization with Morphological Image Processing Scott Schoen Jr, et al. Harvard Medical School and Massachusetts General Hospital		
2621: Localization with Interpolation & Tracking with Hungarian Method Pablo Dumenil, et al. Laboratoire d'Imagerie Biomédicale INSERM	2622: Evaluation of a Processing Pipeline for Motion- Model Ultrasound Localization Microscopy Thomas Lisson, et al. Ruhr-Universität Bochum	2623: Super-Resolution Ultrasound Imaging: A Comparison Between Localization Methods Aline Xavier, et al. Universidad de O'Higgins		
2624: Ultrasound Super Resolution Using Vision Transformer with Convolution Projection Operation Xilun Liu, et al. The Pennsylvania State University	2625: GAN-Based Ultrasound Localization Microscopy Wenting Gu, et al. Shanghai University	2626: SRUSTHI - Super Local Bubble Tracking Inspired by Machine Vision Siva Saket Sripada, et al. University of Texas at Austin		

Thursday, October 13: 8:30 AM – 10:00 AM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	C0L-01: MCA - Monodisperse microbubbles, targeted microbubbles, and bubble imaging Chair(s): Klazina Kooiman (Thoraxcenter, Erasmus MC)	C0L-02: MPA - Photoacoustic imaging and cell enginnering Chair(s): Geoffrey Luke (Dartmouth), Parag Chitnis (George Mason University)	C0L-03: PPN - Phononics Chair(s): Andreas Mayer (HS Offenburg - University of Applied Sciences, Gengenbach), Jan Brown (Jan Brown Consulting)
8:30	2510: Dynamic Ultrasound Localisation Microscopy Achieves Quantitative Pulsatility Measurements in the Whole Brain Using Kalman Filtering Chloé Bourquin, et al. Polytechnique Montréal	1010: (INVITED) Optical/Photoacoustic Hybrid Microscopy for Visualizing Morphology and Composition of Cells Yoshifumi Saijo Tohoku University	2590: (INVITED) Topological Gallery of Non- Hermitian Whispers Johan Christensen Universidad Carlos III de Madrid
8:45	1910: Acoustic Sizing Method of Vibrating Single Microbubbles Using Phase Demodulation Sander Spiekhout, et al. Erasmus MC		
9:00	1612: Spatiotemporal Analysis of Contrast-Enhanced Ultrasound for Breast Cancer Diagnostics Chuan Chen, et al. Eindhoven University of Technology	2058: Miniaturized Gold Nanochains Enhanced Photoacoustic Microscopy and Optical Coherence Tomography Ocular Molecular Imaging Van Phuc Nguyen, et al. University of Michigan	1958: Glide-Reflection Symmetric Topological Phononic Crystal Waveguide Julio Andrés Iglesias Martínez, et al. Femto-st
9:15	1852: Contrast Imaging Scheme in the Presence of Motion and Nonlinear Propagation of Ultrasound Geraldi Wahyulaksana, et al. Erasmus MC	2502: Engineering Membraneless Organelles as Genetically-Encoded Photoacoustic Reporters Kelsey Kubelick, et al. Georgia Institute of Technology and Emory University School of Medicine	2200: Phononic Frequency Comb Generation in a CMUT Operating in Air and Liquid Environments Sushruta Surappa, et al. Georgia Institute of Technology
9:30	2394: Novel Design of Fibrin-Targeted Perfluorocarbon Microbubbles for Thrombosis Investigations Hanyue Shangguan, et al. University of Waterloo	1140: Benign and Malignant Classification of Human Colorectal Tissue by Acoustic-Resolution Photoacoustic Microscopy Peng Ge, et al. ShanghaiTech University	2259: Surface Acoustic Wave Driving of Micromechanical Resonators in the Linear and Nonlinear Regimes Sarah Benchabane, et al. CNRS/FEMTO-ST
9:45	1173: Freeze-Dried Monodisperse Microbubbles: Next Generation UCAs Ugur Soysal, et al. ESPCI	1079: Photoacoustic Detection of DNA-Containing Water Droplets Taehoon Bok, et al. Ryerson University	2287: Focusing of Flexural Elastic Waves in a Plate with a Metasurface Made of Elliptical Shape Pillars Laurent Carpentier, et al. IEMN, University of Lille

Thursday, October 13: 8:30 AM – 10:00 AM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	COL-04: NMC – Material and Defect Characterization I Chair(s): Walter Arnold (Fraunhofer Institute for NDT, Germany), Erdal Oruklu (Illinois Institute of Technology, USA)	C0L-05: TMI - Design and Fabrication of Large Arrays Chair(s): Jeremy Brown (Dalhousie University), Holly Lay (Fujifilm Visualsonics)	C0L-06: MBB - Image Correction II Chair(s): Brett Byram (Vanderbilt University)
8:30	1006: Non-Contact Ultrasonic Exploration of Ancient Paintings Victor Takahashi, et al. Tours University - GREMAN	2411: Fabrication Process for Large-Area Electrostrictive TOBE Arrays Mohammad Rahim Sobhani, et al. University of Alberta	1229: Aberration Corrected Bistatic Multiperspective Ultrasound Imaging of the Abdomen Vera van Hal, et al. Eindhoven University of Technology
8:45	2069: Scanning Acoustic Microscopy for Detecting the Inner Defects in Cold Sprayed Coatings Martin Koller, et al. Institute of Thermomechanics, Czech Academy of Sciences	2401: Row-Multiplexed 1,024 Element Large Aperture Array for Electronic Scanning in Elevation Robert Wodnicki, et al. University of Southern California	1318: Aberration Correction in the Echo Lab - A Clinical Pilot Svein-Erik Måsøy, et al. Norwegian University of Science and Technology
9:00	1533: Application of Laser-Ultrasound in the GHz-Range for Characterization of Micro-Acoustic Devices and Their Constituent Materials Clemens Grünsteidl, et al. Research Center for Non Destructive Testing GmbH	2135: Large Matrix Array Aperture for 3D Vascular Imaging Capture Quorentin Colas, et al. Vermon S.A.	2046: Global Speed-of-Sound Prediction Using Transmission Geometry Can Deniz Bezek, et al. Uppsala University
9:15	2290: Ultrasonically Determined Elastic Constants of Additively Manufactured 316L Stainless Steel Mason Hayward, et al. University of Louisiana at Lafayette	1632: High Performance Large-Area Polymeric PMUT Phased Arrays in Air Christopher Chare, et al. imec	1460: Joint GAN Based Beamformer and Breast Lesion Classifier for Enhanced Ultrasound Imaging Ariel Amar, et al. Weizmann Institute of Science, Rehovot, Israel
9:30	2433: Development of 1024-Element 2D Matrix Array Transducer Based on Numerical Simulation and Experimental Scattering Analyses for NDE Applications Yoshikazu Ohara, et al. Tohoku University	1939: Design and Process Development for Large- Scale Row-Column CMUT Arrays Kitty Steenberg, et al. Technical University of Denmark	1147: Increasing Frame Rate of Focused Ultrasound Imaging Based on Tensor Completion Sajjad Afrakhteh, et al. University of Trento
9:45	1620: Automated and Real-Time Interpretation of Ultrasonic B-Scans Toward Industry/NDE 4.0 Ryan Scott, et al. Institute for Diagnostic Imaging Research	1457: A General Equivalent Circuit Model for PMUTs Array Working in Multi-Vibration Modes Tingzhong Xu, et al. Silicon Austria Labs GmbH	1113: Accelerated Real-Time Refraction-Corrected Transcranial Ultrasound Imaging with a Single Array Transducer Moein Mozaffarzadeh, et al. Delft University of Technology

Thursday, October 13: 8:30 AM – 10:00 AM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	
	C0L-07: MIM - Brain Imaging Chair(s): Gianmarco Pinton (University of North Carolina), Pieter Kruizinga (Erasmus MC)	C0L-08: MTH - Therapy devices Chair(s): Cyril Lafon (INSERM, LabTAU), Kenneth Bader (University of Chicago)	
8:30	1645: Elastic Full-Waveform Inversion for Transcranial Ultrasound Computed Tomography Using Optimal Transport Patrick Marty, et al. ETH Zürich	1665: Development of a Toroidal HIFU Transducer for Treating the Hepato-Caval Confluence. In Vivo Results on a Porcine Model Sophie Cambronero, et al. LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France	
8:45	2236: 1024-Channel 1.5 MHz Sparse Array for Fully Volumetric Human Transcranial Imaging Jacob McCall, et al. UNC Chapel Hill	1943: Characterization and In-Vitro Validation of a Dual-Mode CMUT Probe for Ultrasound-Guided HIFU Ablations Guillaume Vanstaevel, et al. LabTAU, INSERM, Centre Léon Bérard, Université de Lyon	
9:00	1606: Functional Ultrasound Imaging Reveals Sub- Millimeter Activation Within the Primary Visual Cortex of Ferrets Wentao Hu, et al. Department of Electrical and Computer Engineering, University of Rochester	2383: Control of Heat-Triggered CAR T Cell Transgene Expression by Dual Mode Ultrasound Image-Guided Focused Ultrasound System Jeungyoon Lee, et al. Georgia Institute of Technology	
9:15	2086: First In-Human Confirmation of Spatial Overlap Between High-Resolution Functional Ultrasound (fUS)- and fMRI-Based Functional Maps Sadaf Soloukey, et al. Dept. of Neuroscience and Neurosurgery, Erasmus MC	2588: HIFU Monitoring in Prostate Cancer Based on B-Mode Images Thomas Payen, et al. LabTau, INSERM U1032	
9:30	2039: Skull-Aberration Correction for High Contrast Transcranial Doppler Neuroimaging Rick Waasdorp, et al. Delft University of Technology	1628: Formulas for Maximum Appropriate Hydrophone Sensitive Element Size and Hydrophone Spatial Averaging Correction Factors for Therapeutic Ultrasound System Characterization Keith Wear, et al. Food and Drug Administration	
9:45	1332: Design of a Custom Flexible Ultrasound Transducer as an Implantable Sensor for Long-Term Post-Operative Brain Monitoring Kelley Kempski, et al. Johns Hopkins University	1057: Does Wave Mode Conversion at Large Incidence Angles Improve Transcranial Ultrasound Transmission? It Depends on the Porosity Bowen Jing, et al. Georgia Institute of Technology	

Thursday, October 13: 11:00 AM – 12:30 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	C2L-01: MBF - Contrast-free microvascular imaging I Chair(s): Pengfei Song (University of Illinois), Brett Byram (Vanderbilt University)	C2L-02: MSR - Super Resolution Ultrasound in the Brain Chair(s): Olivier Couture (CNRS at Sorbonne University), Kirsten Christensen-Jeffries (King's College Longon)	C2L-03: PTF - Thin Films I Chair(s): Mihir Patel (MACOM), Andreas Mayer (HS Offenburg - University of Applied Sciences, Gengenbach)
11:00	1211: Combining Multispectral Photoacoustic Fluctuation Imaging and Ultrasound Doppler for 3D Full Vascular Characterization Using a Sparse Array Guillaume Godefroy, et al. Univ. Grenoble Alpes, CNRS, LiPhy	1585: Ultrasound Localization Microscopy Cerebrovascular Mapping in a Mouse Model of Alzheimer's Disease Matthew R. Lowerison, et al. University of Illinois Urbana-Champaign	1900: Sputter Epitaxial (10-12) LiNbO3 Film / (1120) Azo / (10-12) Al2O3 Shear Mode Thin Film Resonators Shinya Kudo, et al. Waseda University, ZAIKEN
11:15	1182: Longitudinal Brain Perfusion Quantification by Ultrafast Power Doppler Using Freehand Scanning on Human Neonates Nikan Fakhari, et al. University of Toronto/SickKids hospital	1703: Super-Resolution Imaging of Cerebral Vasculature in Transgenic Alzheimer's Disease Mice with Ultrasound Localization Microscopy Yingtao Liao, et al. Shenzhen University	2048: Experimental and Theoretical Investigation of Enhanced Electromechanical Properties in YbAlN and YbGaN Films Song Li, et al. Waseda University, ZAIKEN
11:30	2059: Ultrafast Power Doppler Imaging of Human Newborn with Medullary Vein Infarction: A Pilot Study Lijie Huang, et al. Tsinghua University	2314: Transcranial 3D Ultrasound Localization Microscopy Using a Multi-Lens Diffracting Layer Hugues Favre, et al. Physics for Medecine Paris, ESPCI Paris, Inserm U1273, CNRS UMR 8063, France	2434: Fabrication of High kt² and k′35² Sc0.4Al0.6N Thin Films by RF Magnetron Sputtering Yuki Shimizu, et al. Waseda University, ZAIKEN
11:45	2084: Whole-Brain Vascular Imaging for Minimally Invasive Neurosurgery Anatole Jimenez, et al. Physics for Medicine Paris, INSERM U1273, ESPCI, CNRS, PSL University	1870: Transcranial 3D ULM in Sheep Antoine Coudert, et al. LIB (Sorbonne Universite, CNRS, INSERM)	2327: IBAD c-Axis Parallel ZnO Piezoelectric Film Stack for Gyroscope Applications Shinya Kudo, et al. Waseda University, ZAIKEN
12:00	2375: Vascular Changes Due to Ageing Using Ultrafast Ultrasound Doppler Combined with Scanning Laser Confocal Microscopy Maximiliano Anzíbar Fialho, et al. Facultad de Ciencias, Universidad de la República	1945: In Vivo Whole Brain Microvascular Imaging in Mice Using Transcranial 3D Ultrasound Localization Microscopy with a Fully Populated Matrix Array Adrien Bertolo, et al. Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063	2340: Grow of O-Polar and Zn Polar Ferroelectric MgZnO Thin Films Controlled by Sputtering Geometry Yohkoh Shimano, et al. Waseda University, ZAIKEN
12:15	1999: 4D Superficial Microvascular Imaging of the Human Finger with a Low Channel cMUT RCA Sensor Cyprien Blanquart, et al. Physics for Medicine, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063	1137: Ultrasound Localization Microscopy for Compression-Induced Spinal Cord Injury Evaluation Junjin Yu, et al. Fudan University	1966: Calculation of the Dispersion of Elastic Waves in Lithium Niobate-on-Sapphire Substrates Léa La Spina, et al. FEMTO-ST Institute

Thursday, October 13: 11:00 AM – 12:30 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	C2L-04: NMC – Material and Defect Characterization II and NPC – Process Control and Industrial Chair(s): TBA	C2L-05: TPF - Piezoelectric Transducer Materials and Fabrication Chair(s): Stefan Rupitsch (Friedrich-Alexander University)	C2L-06: MTC - Ultrasound Tissue Characterization Measurement Techniques Chair(s): Jeffrey Ketterling (Riverside Research), Massimo Mischi (Einhoven University of Technology)
11:00	1758: Correlation Between Quantitative Ultrasound Parameters and Quality of Selective Laser Melting Components Manufactured by Different Energy Density Chun-Hui Lin, et al. National Cheng Kung University	1636: Bone Cutting Performance of Ultrasonic Surgical Tools Incorporating PZT Piezoceramic and Mn:PIN-PMN-PT Piezocrystal Xuan Li, et al. University of Glasgow	1319: (INVITED) Experimental and Computational Methods for Quantitative Acoustic Microscopy at Ultra-Fine 2-µm Resolution Jonathan Mamou Weill Cornell Medicine
11:15	2056: A 3D Grain Flow Direction Estimation in Titanium Alloys Samples Based on the Ultrasonic Reflection Matrix Analysis Cécile Brütt, et al. Safran Tech	1681: Single-PZT-Fiber Transducers for 3D Ultrasound Computed Tomography: Characterization and Modeling Martin Angerer, et al. Karlsruhe Institute of Technology	
11:30	1031: Onboarding Simple Sonar System with Thermophone for Autonomous Flying Drone Yasufumi Yamada, et al. Hiroshima University	2306: Y-36 Lithium Niobate Films Support f-Q of 5.5·1013 Hz in the 1-10 GHz Range Zachary Schaffer, et al. Carnegie Mellon University	2175: Application of the Cylindrical-Gaussian Form Factor for Collagen Fiber Characteristics Assessment in Myopic Eye Sclera with High-Frequency Quantitative Ultrasound Kazuyo Ito, et al. Tokyo University of Agriculture and Technology
11:45	1151: Identifying Regions-of-Interest and Extracting Gold from PCBs Using MHz HIFU Axi Holmström, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	1418: High Temperature Performance Over 700°C of LiNbO3-Based Ultrasonic Transducer Naoki Zaito, et al. Kumamoto University	1380: Evaluation of Ultrasound Scattering Models Adapted for Two Types of Scatterers to Extract Coherent Scatterer Parameters from Cell-Pellet Biophantoms Pauline Muleki-Seya, et al. CREATIS
12:00	1169: Ultrasonic Standing Wave-Crystallized Oleogels Characterized via Oscillatory Rheology Petri Lassila, et al. Electronics Research Lab., Dept. of Physics, University of Helsinki	1199: (INVITED) Advanced Technologies for the Manufacture of Customized Ultrasonic Transducers Sylvia Gebhardt Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Dresden	1675: Combined Ultrasound & Light Backscattering Spectroscopy for Cancer Characterization: A Proof of Concept Cyril Malinet, et al. CREATIS CNRS
12:15	1646: Transportation of Granular Materials with Ultrasonic Augers Xuan Li, et al. University of Glasgow		1977: Synthetic Ultrasound Mastoid Imaging Based on Deep Learning of a Finite Signal Set for the Diagnosis of Middle Ear Effusion Yen Heng Lai, et al. Chang Gung University

Thursday, October 13: 11:00 AM – 12:30 PM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	
	C2L-07: MEL - New Applications and Methods in Elastography Chair(s): Chih-Chung Huang (National Cheng Kung University), Stefan Catheline (INSERM, LabTAU)	C2L-08: MIS - Imaging Chair(s): Gregg Trahey (Duke University), Nicholas Bottenus (University of Colorado Boulder)	
11:00	1110: Validation of Nonlinear Shear Modulus Quantification by Using 3 Different Methods: Ultrasound Shear Wave Elastography, Magnetic Resonance Elastography and Numerical Simulation Marion Bied, et al. BioMaps	2403: Enabling High Frame Rate Ultrasound Imaging at Low Data Rates: Receiver Channel Recovery Using Branched Convolutional Neural Networks William Pitman, et al. University of Waterloo	
11:15	1069: Imaging of Cell Viscoelasticity Using the Optical Micro-Elastography and Subzone Non-Linear Inversion Techniques Guillaume Flé, et al. University of Montreal Hospital	1504: Compressive Imaging with Spatial Coding Masks on Low Number of Elements: An Emulation Study Yuyang Hu, et al. Erasmus Medical Center	
11:30	1126: Acoustic Force Elastography Microscopy: A New Modality to Evaluate Mechanical Properties of Transparent Scaffolds for Tissue Engineering Hsiao-Chuan Liu, et al. Mayo Clinic	1174: Breaking and Fixing gCNR and Histogram Matching Siegfried Schlunk, et al. Vanderbilt University	
11:45	2155: Quantitative Assessment of the Viscoelastic Properties for Skin Scar Using High-Frequency Ultrasonic Elastography with Lamb Wave Model Yu-Chen Wu, et al. National Cheng Kung University	1741: A Physics-Based Neural Network (PNN) Approach to Solve the Heterogeneous Nonlinear Full- Wave Equation You Li, et al. Stanford University	
12:00	2396: Observation of Super-Resolved Shear Shock Waves in the Human Head Phantom Using High Frame-Rate Ultrasound Imaging Sandhya Chandrasekaran, et al. North Carolina State University	1548: Generation of Realistic Simulated B-Mode Image Texture with a GAN Nolann Lainé, et al. CREATIS	
12:15	2404: In Vivo Ultrasound Imaging of Traumatic Brain Injury Biomechanics and Imaging of Functional Response to Injury Sandhya Chandrasekaran, et al. North Carolina State University	2422: Acoustoelectric Imaging Using Hadamard Encoded Transmissions Chet Preston, et al. University of Arizona	

Thursday, October 13: 2:00 PM - 3:30 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	C3L-01: TMI - Multiwave and Multimodal Transducers, and Novel Techniques Chair(s): Xiaoning Jiang (NC State University)	C3L-02: NSH – Structural Health Monitoring and NAS - Acoustic Sensors Chair(s): David Greve (Carnegie Mellon University, USA)	C3L-03: AMS - MEMS and Sensors Chair(s): Sunil Bhave (Purdue University), Marta Clement (Polytechnic University of Madrid)
14:00	1290: Fabrication of an Array of Eccentric Sources for Freehand Optical Ultrasound Imaging Fraser Watt, et al. University College London	1684: Ultrathin, High Sensitivity Polymer-Based Capacitive Micromachined Transducers (polyCMUTs) for Acoustic Emission Sensing in Fiber Reinforced Polymers Jonas Welsch, et al. University of British Columbia	1490: (INVITED) Magnetic Surface Acoustic Wave Sensors (MSAW): State of the Art, Trends and Potential Applications Omar Elmazria Université de Lorraine – CNRS
14:15	1766: Transparent Ultrasonic Transducers for Multimodal Biomedical Imaging Chaorui Qiu, et al. Xi'an Jiaotong University	1708: Direct-Write Piezoelectric Transducers on a Composite T-Joint Structure for Lamb Waves-Based Monitoring Marilyne Philibert, et al. Institute of Materials Research and Engineering, Agency for Science, Technology and Research	
14:30	2275: Dual Frequency Transparent CMUT Arrays for Photoacoustic Imaging Mahyar Ghavami, et al. University of Alberta	1597: Microfabrication of Fibre Optic Ultrasound Sensors with Free-Standing Parylene-C Membranes Richard Caulfield, et al. University College London	2496: A Lithium Niobate MEMS-Coupled Matching Network for BFSK Modulated Signal Amplification in Spectrum Monitoring Applications Luca Colombo, et al. Northeastern University
14:45	2406: A Multi-Directional Array Transducer for Muscle Shear Wave Anisotropy Estimation Huaiyu Wu, et al. Department of Mechanical and Aerospace Engineering, North Carolina State University	2139: Fibre-Optic Hydrophones for High Intensity Ultrasound Fields- Modelling and Measurement Study Esra Aytac Kipergil, et al. University College London	1546: Y-Cut Lithium Niobate A1 Mode Film Bulk Acoustic Resonators for Wideband Filter Applications Soumya Yandrapalli, et al. EPFL
15:00	2020: Development of a Miniaturized Dual-Element Catheter for Intravascular Ultrasonic Elastography Zhengjie Wu, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences	2180: Optimization of Thin Film Protection for Waveguided Ultrasonic Phased Arrays Matthias Rutsch, et al. Technische Universität Darmstadt	1398: Theoretical Investigation of Wideband Longitudinally Coupled Resonator Filter Using Lithium Niobate Thin Plates Wu-Ping Li, et al. UESTC
15:15	1555: 3D Localization of Scatterers with a Spiral-Shaped Acoustic Lens Luzhen Nie, et al. University of Leeds	2505: Characterization of Temperature Heterogeneity in Utility-Scale Power Plant Boilers by Spatially Distributed Ultrasonic Measurements Kenneth Walton, et al. University of Utah	2099: Optimization of Etched Areas for Improved Anti-Resonance Quality Factor in Lithium Niobate SH0 Resonators Silvan Stettler, et al. EPFL

Thursday, October 13: 2:00 PM – 3:30 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	C3L-04: MTH - Neuromodulation Chair(s): Hairong Zheng (Shenzhen Institutes of Advanced Technology), Thomas Deffieux (Physics for medicine - Paris)	C3L-05: MSD - High Frame Rate, Ultrafast, Imaging Chair(s): Steven Freear (University of Leeds), Piero Tortoli (University of Florence)	C3L-06: MEL - Cardiac Elastography Chair(s): Annette Caenen (Ghent University), Richard Lopata (Eindhoven University)
14:00	2344: Sonogenetics for Locomotor Behavior Modulation in Freely Moving Mice Kevin Xu, et al. Washington University in St. Louis	2297: A Novel 3D Row Column Imaging Technique Demonstrated on a 20 MHz Electrostrictive Array Nicholas Campbell, et al. Dalhousie University	1738: Cardiac Shear Wave Speed Estimation in 3D: An In Silico and In Vivo Study Ekaterina Seliverstova, et al. KU Leuven
14:15	1422: Real-Time Closed-Loop Ultrasound Vagus Nerve Stimulation for Inhibition of Epileptic Seizures in Rats Houminji Chen, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences	2345: Al-Powered Ultrasound Imaging with Edge Computing: Real-Time Realization of Aliasing Resistant Color Doppler Mapping Hassan Nahas, et al. University of Waterloo	2158: Dynamic High-Spatiotemporal Myocardial Strain Imaging for Adult Zebrafish Through Highfrequency Vector Doppler Imaging Hsin Huang, et al. National Cheng Kung University
14:30	1746: Focused Ultrasound Increases Dorsal Root Ganglion Excitability Filtering Stephen Lee, et al. Columbia University	1843: Development and Clinical Validation of a High- Framerate Transrectal Urodynamic Vector Flow Imaging System Takuro Ishii, et al. Tohoku University	2055: Continuous Mechanical Wave Imaging: Towards Automated Cardiac Stiffness Imaging Sébastien Salles, et al. LIB
14:45	1971: Evidence of Acoustic Radiation Force as a Driving Mechanism in FUS Neurostimulation: Impact on Neural Response Success Rate and Temporal Density Ivan Suarez-Castellanos, et al. LabTAU - INSERM	1193: Towards Continuous Ultrafast Ultrasound Imaging with an FPGA-Based Ultrafast Beamformer Zhengchang Kou, et al. University of Illinois Urbana-Champagin	1654: Myocardial Stiffness Assessment by Ultrasound in Humans: Comparison Between Shear Wave Elastography, Natural Mechanical Waves, and Myocardial Stretch Induced by Atrial Kick Jose Carlos Villalobos, et al. The Hospital for Sick Children
15:00	2105: Modulation of Somatosensory Evoked Potentials via Focused Ultrasound Median Nerve Stimulation Erica McCune, et al. Columbia University	1901: New Ring Architecture for Real-Time High- Frame-Rate Imaging on the ULA-OP 256 Scanner Claudio Giangrossi, et al. Department of Information Engineering, University of Florence	2198: Quantitative Characterization of Cardiac Transplant Grafts Using Shear Wave Elastography Olivier Pedreira, et al. Physics for Medicine, ESPCI, INSERM U1273, CNRS UMR 8063, PSL University, Paris, France
15:15	1395: Holographic Ultrasound Stimulation Improves Non-Motor Function in Parkinson's Disease Mice Hui Zhou, et al. Shenzhen Institutes of Advanced Technology	1185: Noncontact, Non-Invasive Transcranial Ultrasound System for Brain Imaging Robert W Haupt, et al. MIT Lincoln Laboratory	1582: Feasibility of Cardiac Time Harmonic Elastography for the Detection of Diastolic Dysfunction Tom Meyer, et al. Charité - Universitätsmedizin Berlin

Thursday, October 13: 2:00 PM - 3:30 PM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	
	C3L-07: MIM - New Imaging Modalities Chair(s): Stanislav Emelianov (Georgia Institute of Technology and Emory University School of Medicine), Jean Provost (Polytechnique Montreal)	C3L-08: MIS - Motion and Flow Estimation Chair(s): Olivier Couture (CNRS at Sorbonne University), Chris De Korte (Radboud University Medical Center)	
14:00	2356: MRI Guided Transcranial Acoustoelectric Images for Safe and Accurate Electrical Brain Mapping Margaret Allard, et al. University of Arizona	2364: Methods for Micro Ultrasound Flow Imaging of the Chorioallantoic Membrane (CAM) Patient Derived Tumor Model Sara Mar, et al. University of Toronto	
14:15	2485: A Complementary Ultrasound and Photoacoustic Thermal Imaging Technique Without Prior Knowledge of Tissue Composition Jeungyoon Lee, et al. Georgia Institute of Technology	2065: Tracking Heart Valve Motion from Transthoracic Echocardiography Using Deep Learning Sigurd Vangen Wifstad, et al. NTNU	
14:30	1919: Integrated US-OCT-NIRF Tri-Modality Endoscope for Ulcerative Colitis-Associated Colorectal Cancer Imaging Ruiming Kong, et al. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences	1799: Dealiasing of Color Doppler Echocardiography Using Deep Learning Hang Jung Ling, et al. CREATIS, CNRS UMR5220, Inserm U1294, University of Lyon	
14:45	1431: 3D Ultrasound Parametric Modeling Imaging for Spine Deformity – A Preliminary Study Yuchong Gao, et al. ShanghaiTech University	1965: Deep Unfolding RPCA for High Resolution Flow Estimation Vassili Pustovalov, et al. IRIT Laboratory	
15:00	1301: Increased Displacement in Magnetomotive Ultrasound Imaging by Adding a Homogeneous Magnetic Field Jules Reniaud, et al. Lund University	1686: Automated Venous Gas Emboli Classification in Post-Dive Doppler Ultrasound Audio Using Deep-Learning and Synthetic Data Augmentation Arian Azarang, et al. University of North Carolina - Chapel Hill	
15:15	2578: Single Element 2D Ultrasound Imaging Through an Ergodic Relay Olivier Caron-Grenier, et al. Polytechnique Montréal	1503: Robust Automatic Estimation of Muscle Thickness in Ultrasound Image Sequences: A Novel Entropy-Based Contour Tracking Method Hongtao Liang, et al. School of Physics and Information Technology, Shaanxi Normal University	

Thursday, October 13: 4:30 PM – 6:00 PM (Lectures)

	Tropicana 1/Excelsior 1.1	Tropicana 3/Excelsior 1.2	Volpi / Casinò 1.2
	C4L-01: TTT - Theurapetic Transducers Chair(s): Koko Lam (The Hong Kong Polytechnic University)	C4L-02: NAF - Acoustic Microfluidics, NUA - Underwater Acoustics and NFM - Flow Measurement I Chair(s): Nishal Ramadas (Hy-Met Limited, UK)	C4L-03: ASM - SAW Modelling Chair(s): Ventsislav Yantchev (Q-Arts Consulting Ltd.)
16:30	1571: Integration of Forward-Viewing and Side-Viewing Ultrasound Transducers in an Intravascular Sonothrombolysis Catheter Bohua Zhang, et al. North Carolina State University	1756: Trapping of Microbead Spheroids by pMUTs in Microfluidic Channels Embedded with an Acoustic Reflector Yul Koh, et al. Institute of Microelectronics	1022: COM-Based Perturbation Analysis of Nonlinear Signal Generation in I.H.P. SAW Resonators Ken-Ya Hashimoto, et al. University of Electronic Science and Technology of China
16:45	1788: Electronically Steerable MR-Guided Small Animal Histotripsy Array for Orthotopic Tumor Ablations Ryan Hubbard, et al. University of Michigan	1518: Core Needle Biopsy Gun Generates Cavitation Activity Jussi Kiviluoto, et al. Aalto University	1168: Layer Stack Dependencies of Self-Generated Nonlinear Signals in Layered SAW Resonators Thomas Forster, et al. Technical University of Munich (TUM)
17:00	1378: Acoustic Hologram Lens Made of Nanoparticle-Epoxy Composite Molding for Directing Predefined Therapeutic Ultrasound Beams Jinwook Kim, et al. The University of North Carolina at Chapel Hill	1588: Echo-PIV of Flow in 3D-Printed Flexible Semi- Circle Tubes: A Cross Validation Study Ashkan Ghanbarzadeh-Dagheyan, et al. University of Twente	1643: The COM Model Includes a Bulk Wave Scattering in the IDT/Reflector Interface in SAW Resonators Aleh Loseu, et al. SOLLO LLC
17:15	1297: Additively Manufactured FUS Transducer Miniaturization with a Fresnel Lens Jack Stevenson, et al. University Of Glasgow	2108: Ultrasound Localization Microscopy by Nonlinear Adaptive Beamforming – A Case Study for Super-Resolved Flow Fields in Liquid Metal Experiments David Weik, et al. Laboratory of Measurement and Sensor System Techniques, TU Dresden, 01062 Dresden	1064: Manipulation of SAW Slowness Shape Using Low-Cut LT/Quartz Structure for Transverse Resonance Suppression Without k2 Deterioration Yiwen He, et al. University of Electronic Science and Technology of China
17:30	1443: Development of a Completely Non-Invasive Cross-Shaped Toroidal HIFU Transducer for Increasing the Treated Volume in Liver Tissues Using Shifted Focalization Sophie Cambronero, et al. LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France	2195: 3D Flow Velocity Estimation of Influx from Fractures in Borehole Wall and Estimation of Fracture Area Using Pulsed-Wave Doppler Ultrasound for Logging-While-Drilling Shivanandan Indimath, et al. Norwegian University of Science and Technology	2122: The Dependence of Mechanical Properties of the Electrode Material on the Effective Coupling Coefficients of SAW Resonators with a Heterogenous Substrate Xiaoli Fang, et al. Shanghai Institute of Microsystem and Information Technology
17:45	2515: Inducing Cavitation Within Hollow Cylindrical Transducers for Use in Intravascular Thrombolysis Li Gong, et al. University of Toronto		1284: Dual-Band Acoustic Wave Filter Based on the Conventional Standalone Ladder Topology Lluís Acosta, et al. Universitat Autònoma de Barcelona

Thursday, October 13: 4:30 PM – 6:00 PM (Lectures)

	Mosaici 1 / Casinò 3.1	Mosaici 2 / Casinò 3.2	Darsena
	C4L-04: MBE - Therapy and Dosimetry Chair(s): Alfred Yu (University of Waterloo)	C4L-05: MCA - Phase change agents and microbubbles Chair(s): Paul Dayton (University of North Carolina/NCSU), Michael Kolios (Ryerson University	C4L-06: MTC - Ultrasound Estimation of Sound Speed and Attenuation Chair(s): Tomy Varghese (University of Wisconsin–Madison), James Wiskin (QT Ultrasound Inc.)
16:30	1626: Effects of Focused Ultrasound and Dry Needling in an In Vivo Murine Tendinopathy Model Molly Smallcomb, et al. The Pennsylvania State University	1637: Acoustic Modulation of Superheated Nanodroplets for Direct Proton Range Verification at Body Temperature Sophie Heymans, et al. KU Leuven campus KULAK	2359: Attenuation Coefficient Imaging Using Regularization by Denoising Anthony Carrera, et al. Pontificia Universidad Católica del Perú
16:45	1078: The Protective Effects of Low-Intensity Low- Frequency Pulse Ultrasound in Preventing Er Stress- Induced Motor Neuron Apoptosis Thi-Thuyet Truong, et al. National Cheng Kung University	1857: Combining Two Ultra-High-Speed Cameras to Investigate Ultrasound-Activated Microbubble Oscillation and Acoustic Droplet Vaporization Hongchen Li, et al. Erasmus University Medical Center Rotterdam	1364: Speed-of-Sound Estimation for Muscle Tissue Characterization with Pulse-Echo Ultrasound via Steered Unfocused Transmissions Di Xiao, et al. University of Waterloo
17:00	1633: Hydrophone Spatial Averaging Correction for High-Frequency Arrays Keith Wear, et al. Food and Drug Administration	1084: On the Physical Mechanisms of the High Echogenicity of Lipid Coated Nanobubbles Amin Jafarisojahrood, et al. Sunnybrook Health Sciences Center	2470: Speed of Sound Imaging with Curvilinear Probes from Full-Synthetic Aperture Data Sergio Sanabria, et al. Stanford University
17:15	1782: Relationship Between Dynamics of Bubbles Phagocytosed by Dendritic Cells and Intracellular Ca2+ Concentration Change Under Exposure to Pulsed Ultrasound Naoyuki Otake, et al. Graduate School of Information Science and Technology, Hokkaido University	1783: 3D Nonlinear Sound-Sheet Imaging of Biomolecular and Synthetic Contrast Agents Baptiste Heiles, et al. Department of Imaging Physics, Delft University of Technology	1793: Feasibility of Attenuation Coefficient and Envelope Signal-to-Noise Ratio for Tissue Characterization of Liver Steatosis José Timaná, et al. Laboratorio de Imagenes Médicas, Pontificia Universidad Católica del Perú, Lima, Perú
17:30	2291: Ultrasound with Microbubbles Accelerates Glymphatic Transportation Dezhuang Ye, et al. Washington University in st louis	1605: Molecular Imaging of PSMA-Targeted Nanobubbles by Modeling the Second-Wave Phenomenon Chuan Chen, et al. Eindhoven University of Technology	1068: Quantitative Ultrasound Imaging Using a Regularized Phantom-Free Reconstruction of Local Attenuation Coefficient Slopes in Heterogeneous Tissues Iman Rafati, et al. University of Montreal Hospital
17:45	2260: Viability Preserving Detection of Circulating Tumor Cells in Liquid Biopsies Using High Intensity Focused Ultrasound Induced microRNA Release Pradyumna Kedarisetti, et al. University of Alberta	1607: Nanobubble Contrast-Enhanced Ultrasound Imaging for Assessing Tumoral Vascular Permeability and Nanoparticle Extravasation Michaela Cooley, et al. Case Western Reserve University	1178: Robust Ultrasound Attenuation Coefficient Estimation with Vessel Detection and Removal Ping Gong, et al. Mayo Clinic College of Medicine and Science

Thursday, October 13: 4:30 PM – 6:00 PM (Lectures)

	Grande / Cinema 1.2	Perla / Casinò 1.1	
	C4L-07: MEL - Vascular Elastography Chair(s): Chris De Korte (Radboud University Medical Center), Hideyuki Hasegawa (University of Toyama)	C4L-08: MIM - New Imaging Techniques I Chair(s): Brooks Lindsey (Georgia Institute of Technology), Jeremy Dahl (Stanford University)	
16:30	1312: Measurement of Wave Propagation Through a Tube Using Two Orthogonally Oriented Transducers Hyoung-Ki Lee, et al. Mayo clinic	1076: Global Image Coherence (GIC) – An In-Vivo Image Quality Metric Ole Marius Hoel Rindal, et al. University of Oslo	
16:45	1715: Elasticity Measurement of Radial Arterial Wall Considering Vessel Shape Change Caused by Pushing Pressure Applied by Ultrasonic Probe Mototaka Arakawa, et al. Tohoku University	1542: Clinical Utility of Adaptive Frequency Selection for Optimizing Target Detectability James Long, et al. Duke University	
17:00	1705: Comparison of Arterial Mechanical Properties Measured with Arterial Dispersion Ultrasound Vibrometry and Clinical Arterial Stiffness Metrics Matthew Urban, et al. Mayo Clinic	2026: Universal Synthetic Aperture Sequences for Anatomic and Functional Imaging Jørgen Arendt Jensen, et al. Center for Fast Ultrasound Imaging, Technical University of Denmark	
17:15	2526: Towards Clinical Adoption of Ultrasound- Based Pulse Wave Velocity Estimation: A Systematic Investigation on the Influence of Systemic Blood Pressure Jason Hsu, et al. University of Waterlo	2121: Pulse-Echo Speed-of-Sound Imaging of the Liver Using Convex Probes Michael Jaeger, et al. University of Bern	
17:30	1070: Local Arterial Stiffness Assessment on Humans: Comparison Between the Use of the Bramwell-Hill Equation and the Direct Pulse Wave Velocity Assessed by Ultrafast Ultrasound Imaging Rahna Rasouli, et al. The Hospital for Sick Children	2432: Direct Speed of Sound Reconstruction from Full-Synthetic Aperture Data with Dual Regularization Sergio Sanabria, et al. Stanford University	
17:45	2132: Imaging of the Viscoelasticity and Fluidity of the Carotid Plaque by Fractional-Derivative Kelvin-Voigt Modeling Yang Li, et al. Xi'an Jiaotong University	1241: Ultrasonic Interrogation of Intracranial Pressure Using an Implantable Pressure Sensor for Quantitative Monitoring of Ventricular Shunt Failure Saeyoung Kim, et al. Mechanical Engineering, BioEngineering Graduate Program, Georgia Institute of Technology	

C1P-10: MBB - Beamforming III			
Chair(s): Hideyuki Hasegawa (University of Toyama), Muyinat	u A. Lediju Bell (Johns Hopkins University)		
Th1.1	Th1.2	Th1.3	
1060: Passive Cavitation Mapping Using Delay-Multiply-	1090: Transmit Delay and Standard Deviation	1123: Wide Field-of-View Plane Wave Ultrasound Imaging	
and-Sum Beamforming with Virtually Augmented	Beamforming to Enhance Specular Reflections in	Based on Array Sub-Apertures and Adaptive Weighting	
Aperture	Synthetic Transmit Aperture Imaging	Technique	
You-An Chen, et al.	Cheng-Hao Lin, et al.	Yadan Wang, et al.	
National Taiwan University of Science and Technology	National Taiwan University of Science and Technology	Hefei University of Technology	
Th1.4	Th1.5	Th1.6	
1302: Fourier-Domain Beamforming and Sub-Nyquist	1314: A Study of Bandwidth Extension in Delay Multiply	1481: Adaptive Quantization for Low-Cost Ultrafast	
Sampling for Coherent Pixel-Based Ultrasound Imaging	and Sum Beamforming Applied to Ultrasound Imaging	Ultrasound Imaging Systems	
Hao Guo, et al.	Hui-Wen Xie, et al.	Doyoung Jang, et al.	
Southeast University	Southeast University	School of Electronics and Electrical Engineering at Dankook	
	·	University	
Th1.7	Th1.8		
1574: A Feasibility Study of 3D Motion Compensation in	2053: RxNet: Learning for Receive Element Reduction in		
3D Diverging Wave Compounding	Synthetic Transmit Aperture Imaging		
Yinran Chen, et al.	Yinran Chen, et al.		
Xiamen University	Xiamen University		

C1P-11: MBB - Beamforming IV Chair(s): Tomas Jansson (Lund University)			
Th2.1 1085: Delay-Multiply-and-Sum Beamforming with Transmit Minimum-Variance Estimation in Multi-Angle Plane-Wave Imaging Gin-Lin Huang, et al. National Taiwan University of Science and Technology	Th2.2 1200: Improved Resolution and Background Noise Suppression for Ultrasound Contrast Microbubbles Reconstruction Using a Joint Enhanced Mean-to- Standard-Deviation Factor and Minimum Variance Beamformer Yadan Wang, et al. Hefei University of Technology	Th2.3 1394: A Beamformer Based on Sub-Nyquist Sampling and Post-Filtering for Efficient High-Frequency Ultrasound Imaging Systems Hayeon Bong, et al. Inje University	
Th2.4 2163: Adaptive Diagonal Reducing and Adaptive Weighting Approach to Covariance Matrix-Based Statistical Beamforming for Ultrasound Imaging Yuanguo Wang, et al. Department of Biomedical Engineering, Hefei University of Technology	Th2.5 2228: Adaptive Spatial Smoothing-Based Minimum Variance Beamforming Using Signal Coherence to Improve Image Quality Jingwen Pan, et al. Hefei University of Technology	Th2.6 2454: Residual CNN Based Angular Compounding for High-Quality Plane Wave Imaging Hyunwoo Cho, et al. Sogang University	
Th2.7 2484: DeNet: Optimizing of Transmit Delays for High Frame Rate Synthetic Transmit Aperture Imaging Xinze Lan, et al. Tsinghua University			

C1P-12: MBF - Blood flow imaging II Chair(s): Matthieu Toulemonde (Imperial College London, UK)			
Th3.1 1427: Pulse Wave Velocity Doppler Measurement of Ulnar Artery Using a High-Frequency Probe Maxime Benchemoul, et al. Vermon SA, INL Lab	Th3.2 1441: Validation of Intravascular Pressure Gradients using Ultrasound and Micro-tip Catheters Lars Emil Haslund, et al. Center for Fast Ultrasound Imaging	Th3.3 1537: An Ultrasound Arthroscopic Probe Driven by Chirp Excitation for Meniscal Surgery Baptiste Pialot, et al. CREATIS, CNRS UMR 5220 – INSERM U1294 – Université Lyon 1 – INSA Lyon	
Th3.4 1566: Blood-Flow Volume Estimation with Bi-Plane Imaging Claudio Giangrossi, et al. Department of Information Engineering, University of Florence	Th3.5 1680: Early Detection of Heterotopic Ossification Using the Color Doppler Ultrasound Twinkling Artifact Lucas Ruge-Jones, et al. Penn State University	Th3.6 2387: Ultrafast 3D Hadamard-Encoded X-Power Doppler Using Electrostrictive Row-Column Transducer Arrays and 3D FFT Based Reconstruction Darren Dahunsi, et al. University of Alberta	
Th3.7 2521: Coded Excitation for Increased Sensitivity in Transcranial Power Doppler Imaging Emelina Vienneau, et al. Vanderbilt University	Th3.8 1615: The Effect of Surface Tension on the Color Doppler Twinkling Artifact in Pure Crystals Eric Rokni, et al. The Pennsylvania State University		

C1P-13: MBF - Vector Flow Imaging II Chair(s): Jason Voorneveld (Erasmus MC)			
Th4.1 1047: Measurement of Lateral and Axial Blood Flow Velocity Components of the Mouse Spinal Cord Microvasculature Using High Frequency Ultrafast Imaging Bowen Jing, et al. Georgia Institute of Technology	Th4.2 1208: Ultrafast Ultrasound Vector Doppler Velocimetry for Brain Vasculature Imaging Shaoyuan Yan, et al. Fudan University	Th4.3 1589: Vector Flow Imaging Using Speckle-Tracking-Based Correlation-Weighted Least Squares Geng-Shi Jeng, et al. Institute of Electronics, National Yang Ming Chiao Tung University	
Th4.4 1704: Effects of Beam Steering Angle in Vector Doppler Method with Plane Wave Imaging Hideyuki Hasegawa, et al. University of Toyama	Th4.5 1882: Sub-Volume 3D Velocity Vector Imaging in a Carotid Artery Phantom with a 1024-Matrix Array Anne Saris, et al. Radboudumc	Th4.6 2015: Velocity Vector Imaging Using Cascaded Dual-Polarity Waves Under Low SNR Conditions Joosje de Bakker, et al. Radboud University Medical Center	
Th4.7 2414: 4D Cardiac Gated Vector Flow Imaging Accurately Measures WSS in a Pressurized Closed-Loop System Keerthi Anand, et al. University of North Carolina, Chapel Hill and North Carolina State University	Th4.8 1279: Simultaneous Measurements of Vascular Strain and Wall Shear Stress in the Carotid Artery Based on Vector Flow Imaging and Vessel Wall Tracking in Duplex Mode Wenlong Xu, et al. Shenzhen Mindray Bio-Medical Electronics Co., Ltd.		

C1P-14: MCA - Imaging and therapy monitoring			
Chair(s): Matthieu Toulemonde (Imperial College London, UK)			
Th5.1	Th5.2	Th5.3	
1181: Pre-Clinical Development of Contrast-Enhanced	1184: Contrast-Enhanced Ultrasound Evaluation of the	1253: Improved Contrast-Enhanced Ultrasound Imaging	
Magneto-Motive Ultrasound Imaging of LNs	Effect of an Exercise Program on Rotator Cuff Disorder	for the Preclinical Assessment of Liver Cancer Treatment	
Marion Bacou, et al.	Priscilla Machado, et al.	with Transarterial Chemoembolization	
University of Edinburgh	Thomas Jefferson University	Katherine Brown, et al.	
		University of Texas at Dallas	
Th5.4	Th5.5	Th5.6	
1488: In-Vitro Investigation of the Impact of	2187: Plane Wave Approaches with Dual-Frequency	2213: Characterization of Hepatocellular Carcinoma	
Monodispersed Microbubble Size on Contrast-Enhanced	Arrays for Superharmonic Contrast Imaging	Perfusion Metrics with Quantitative Contrast-Enhanced	
Ultrasound Super-Localization Imaging	Jing Yang, et al.	Ultrasound	
Peiran Chen, et al.	University of Toronto	Connor Krolak, et al.	
Eindhoven University of Technology		University of Washington	
Th5.7	Th5.8	Th5.9	
2472: Quantitative Contrast-Enhanced Harmonic	2473: Contrast-Enhanced Ultrasound for Assessing	1494: Dynamic Simulations of Ultrasound Contrast Agent	
Endoscopic Ultrasound for Differential Diagnosis of	Blood Flow Modulation of Hepatocellular Carcinoma by	Microbubble Transport Through a Mimicked	
Pancreatic Tumors	Hydralazine	Microvascular Architecture	
Kuan-Chih Chen, et al.	Laith Sultan, et al.	Peiran Chen, et al.	
National Taiwan University	University Of Pennsylvania	Eindhoven University of Technology	
Th5.10			
2223: Effects of Microbubble Size and Volume Dose on In			
Vivo Pharmacokinetics			
Jose Angel Navarro-Becerra, et al.			
University of Colorado Boulder			

C1P-15: MEL - Motion Estimation and Signal Processing for Elastography Chair(s): Rifat Ahmed (Duke University)			
Th6.1 1243: Thoracolumbar Fascia Shear Strain Analysis Using the Lagrangian Speckle Model Estimator: Clinical Evaluation in Patients with Lower Back Pain Norio Tomita, et al. University of Montreal Hospital	Th6.2 1316: A New Fast Imaging Method for Motion Detection: Comb Detection Hyoung-Ki Lee, et al. Mayo clinic	Th6.3 1468: Unsupervised Deep Learning Network for Motion Estimation in Ultrasound Elastography Xingyue Wei, et al. Tsinghua University	
Th6.4 1486: Axial-Velocity Estimation and Enhancement Using a Convolutional Neural Network for Shear Wave Elastography Xufei Chen, et al. Eindhoven University of Technology	Th6.5 1807: Virtual Fields Based-Method for Reconstructing the Elastic Modulus in Quasi-Static Ultrasound Elastography Anne-Lise Duroy, et al. CREATIS	Th6.6 1985: Fast and Flexible Finite Element Regularization of Displacement Estimations Jan-Willem Muller, et al. Eindhoven University of Technology	
Th6.7 2468: Displacement-Based Reconstruction of Elasticity Distributions with Deep Neural Networks Xiao Zhang, et al. Southwest Petroleum University	Th6.8 2087: Toward a More Efficient and Robust Harmonic Motion Imaging (HMI) Sequence by Electronic Steering and Widely Focused Imaging Yangpei Liu, et al. Columbia University		

C1P-16: MEL - Advances in Elastography				
Chair(s): James Greenleaf (Mayo Clinic), Murad Hossain (Columbia University)				
Th7.1	Th7.2	Th7.3		
1109: Transient Elastography at Very High Ultrasound	1349: Intracellular Shear Wave Elastography Imaging of	1513: Quasi-Omnidirectional Shear Wave Generation		
Frequencies	Macrophages	Using Acoustic Vortices for Elastography		
Steve Beuve, et al.	Sajad Ghazavi, et al.	Enrique González-Mateo, et al.		
BioMaps	University of Montreal Hospital	Universitat Politècnica de València		
Th7.4	Th7.5	Th7.6		
1580: Improving Estimates of Stress-Strain Relationships	1596: Functional Time Harmonic Elastography of the	1690: Spatial Resolution in Dynamic Optical Coherence		
in Inclusions with Local Phase Velocity-Based Imaging	Liver: Stiffness Pulsatility as a Novel Marker of Tissue	Elastography in Bounded Media		
Yuqi Wang, et al.	Compliance	Mitchell A. Kirby, et al.		
Mayo Clinic	Tom Meyer, et al.	University of Washington		
	Charité - Universitätsmedizin Berlin			
Th7.7				
2464: 3D Shear Wave Computed Tomography with				
Regularization				
Geng-Shi Jeng, et al.				
National Yang Ming Chiao Tung University				

C1P-17: MIM - New Imaging Techniques III				
Chair(s): Qifa Zhou (University of Southern California), Ton Van Der Steen (Erasmus Medical Centre)				
Th8.1	Th8.2	Th8.3		
1019: Concave 2D Ring Array Transducer for Ultrasound	1905: Volumetric Contrast Pulsing Sequence Imaging	2068: Validation of a Delay-Multiply-and-Sum		
Visual Stimulation of the Brain	with a Sparse Spiral Array	Reconstruction Algorithm for the Detection of		
Jian-Yu Lu, et al.	Luxi Wei, et al.	Osteochondritis Dissecans		
The University of Toledo	Erasmus university medical center	Philip Holmes, et al.		
		Mayo Clinic Graduate School of Biomedical Sciences		
Th8.4	Th8.5	Th8.6		
2459: Radial Synthetic Aperture Focusing to Regulate	2553: Improving Lumbar Spine Imaging with a Large	2567: Spatiotemporal Matrix Image Formation with a High		
Scanning Angle Disorientation in a Low-Cost 3D	Aperture Array	Frequency Row-Column Array		
Transrectal Ultrasound Imaging	Josquin Foiret, et al.	Alice Wu, et al.		
Hyunwoo Song, et al.	Stanford University	Polytechnique Montreal		
Johns Hopkins University				
Th8.7	Th8.8	Th8.9		
1897: 3D Ultrasound Localization Method for Accurate	1500: A Feasibility Study of Low-Frequency Ultrasound	2137: Towards Attenuation Imaging with Computed		
Tracking of Vertebral Levels in Static Postures	Tomography for Human Thorax	Ultrasound Tomography in Echo Mode (CUTE)		
Laura Meszaros-Beller, et al.	Tong Zhang, et al.	Naiara Korta Martiartu, et al.		
Queensland University of Technology	Tsinghua University	University of Bern		
Th8.10	Th8.11			
2338: Differential Diagnosis of Intracranial Hematoma	2554: 3D Ultrasound Tomography Timing Validation for			
Subtypes in Ex-Vivo Sheep Head Model Using	Clinical Deployment			
Transcranial Ultrasound Brain Imaging System	James Wiskin, et al.			
Kiyanoosh Shapoori, et al.	QT Imaging, Inc			
Tessonics Medical Systems, Inc				

C1P-18: MIS - Lung Ultrasound			
Chair(s): Marie Muller (North Carolina State University)			
Th9.1	Th9.2	Th9.3	
1595: Automatic Scoring of COVID-19 LUS Videos Using	1088: Iterative Deconvolution Approach for Automatic	1158: Assisted Diagnosis Algorithm for Lung Ultrasound	
Cross-Correlation-Based Features Aggregated from	Segmentation of Lung Ultrasound Vertical Artifacts	in COVID-19 Patients	
Frame-Level Confidence Levels Obtained by a Pre-	Federico Mento, et al.	Mario Muñoz, et al.	
Trained Deep Neural Network	Department of Information Engineering and Computer	Institute for Physical and Information Technologies, Spanish	
Sajjad Afrakhteh, et al.	Science, University of Trento	National Research Council	
University of Trento			
Th9.4	Th9.5	Th9.6	
1287: Multi-Frequency Approach to Estimate the	1348: COVID-19 Feature Detection with Deep Neural	1487: A Feasibility Study of Quantitative Measure of the	
Roughness of Lung Surface, In Silico Study	Networks Trained on Simulated Lung Ultrasound B-Mode	State of the Lung by Evaluation of Injury Depth from	
Federico Mento, et al.	Images	Lung Ultrasound	
Department of Information Engineering and Computer	Lingyi Zhao, et al.	Quanlong Ma, et al.	
Science, University of Trento	Johns Hopkins University	Xi'an Jiaotong University	
Th9.7			
1363: Identification of B-Lines In Vivo Lung Ultrasound			
by the Evaluation of Characteristic Parameters Using			
Raw RF Data			
Haoyu Zhang, et al.			
Xi'an Jiaotong University			

Chair(s): Sebastien Salles (Norwegian University of Science a	Th10.2	Th10.3
1667: Human Observer Sensitivity to Temporal Noise in Ultrasound Imaging Matthew Huber, et al. Duke University	1306: Al-Powered Measurement of Ultrasonic Axial- Transmission Velocity for Pediatric Skeletal Development Evaluation Qing Li, et al. Fudan University	1720: A New Sound Speed Reconstruction Algorithm for Breast Tissue in Ultrasound Computed Tomography Yue Zhao, et al. Harbin Institute of Technology
Th10.4 1760: A Method for Estimation of the Average Speed of Sound for Delay-and-Sum Beamforming Using the Variance of Phases of Element Signals Ryo Nagaoka, et al. University of Toyama	Th10.5 2216: SoundAl: Improved Imaging with Learned Sound Speed Maps James Young, et al. Harvard University	Th10.6 2242: Experimental Study on Bone Phantom Imaging Using Ultrasound Velocity Inversion and Reverse Time Migration Ying Li, et al. Fudan University
Th10.7 2263: Singular Value Decomposition in Windowed Radon Domain for Aberration Phase Estimation in Pulse-Echo Speed-of-Sound Imaging Samuel Beuret, et al. École Polytechnique Fédérale de Lausanne. EPFL		

C1P-20: MIS - Cardiovascular Image Segmentation Chair(s): Hans Bosch (Erasmus Medical Center)		
Th11.1	Th11.2	Th11.3
1435: Segmentation of Parasternal Long Axis Views in	1225: CLA-U-Net: Convolutional Long-Short-Term-	1307: A Lightweight Structure Detector on Cardiac
Echocardiography Using Deep Learning	Memory Attention-Gated U-Net for Automatic	Ultrasound Images of Multiple Views with Tailored NMS
Erik Smistad, et al.	Segmentation of the Left Ventricle in 2-D	Algorithm
Norwegian University of Science and Technology and	Echocardiograms	Hongjian Jiang, et al.
SINTEF Medical Technology	Zihan Lin, et al.	GE Healthcare
71.44.4	Beijing University of Technology	TIALO
Th11.4	Th11.5	Th11.6
1426: Reaching Intra-Observer Variability in 2-D	1693: Automatic Heart Chamber Identification in Post-	1893: A CT-Derived Intravascular Ultrasound Simulation
Echocardiographic Image Segmentation with a Simple U-	Dive Echocardiograms Using Faster R-CNN	Framework for Deep Learning-Based Image
Net Architecture	David Le, et al.	Segmentation of the Abdominal Aortic Aneurysm
Hang Jung Ling, et al.	University of North Carolina - Chapel Hill	Daniek van Aarle, et al.
CREATIS, CNRS UMR5220, Inserm U1294, University of		Eindhoven University of Technology
Lyon		
Th11.7	Th11.8	Th11.9
1898: Echocardiography Segmentation Based on Cross-	2101: Automatic Strain-Based Myocardial Scar Detection	2102: Automatic Segmentation of the Myocardium in
Modal Data Augmentation Method	Using a Convolutional Neural Network Trained with a	High-Frame Rate Contrast-Echocardiography and
Songbai Jin, et al.	Virtual Patient Cohort	Clinical Contrast-Echocardiography Images
Tsinghua University	Müjde Akdeniz, et al.	Stephanie Sze, et al.
	GE Vingmed Ultrasound, University of Oslo	Imperial College London
Th11.10	Th11.11	Th11.12
2141: Multi-Task Learning Framework for	2277: A Disentanglement and Fusion Data Augmentation	2544: Left Ventricle Wall Segmentation in
Echocardiography Segmentation	Approach for Echocardiography Segmentation	Echocardiography Using B-Mode Image and Radio
Patrice Monkam, et al.	Patrice Monkam, et al.	Frequency Signal Jointly
Tsinghua University	Tsinghua University	Guil Jung, et al.
		KAIST
Th11.13		
1508: Segmentation of 2D Cardiac Ultrasound with Deep		
Learning: Simpler Models for a Simple Task		
Artem Chernyshov, et al.		
Norwegian University of Science and Technology		

C1P-21: MPA - Photoacoustic Imaging and Instrumentation		
Chair(s): Stanislav Emelianov (Georgia Institute of Technology and Emory University School of Medicine), Michael Kolios (Ryerson University)		
Th12.2 Th12.3		
	1075: Hand-Held 3D Photoacoustic Imaging System with	1150: Fibre Optic All-Optical Ultrasound and
	GPS	Photoacoustic M-Mode Imaging
	Daohuai Jiang, et al.	Richard Colchester, et al.
	ShanghaiTech University	University College London

Th12.4	Th12.5	Th12.6
1499: LED-Based Photoacoustic Imaging of the	1554: Multiview, Volumetric and Simultaneous	1608: Miniaturized Catheter-Integrated Photoacoustic
Lymphatic Vessels in Patients with Secondary	Photoacoustic and Ultrasound Imaging with a	Ablation Monitoring System: A Feasibility Study
Lymphedema	Conventional Linear Array	Shang Gao, et al.
Saskia van Heumen, et al.	Clément Linger, et al.	Worcester Polytechnic Institute
Erasmus MC	Sorbonne Universite	-
Th12.7	Th12.8	Th12.9
1635: Transparent Gellan Gum as an Efficient Coupling	2002: Mixture of Intact RBC and Free Hemoglobin Under	2244: Wideband Photoacoustic Imaging In Vivo with
Media for Photoacoustic Imaging Applications	a Low Cost, Low Power Photoacoustic System with	Complementary Frequency Conventional Ultrasound
Eric Reichel, et al.	Application in Hemolysis	Transducers
University of Arizona	Soumyodeep Banerjee, et al.	Sowmiya Chandramoorthi, et al.
	The Universoty of Burdwan	Erasmus Medical Center
Th12.10	Th12.11	Th12.12
2323: Impact of Skin Pigmentation on Photoacoustic	2357: Laser Diode Beam Shaping and Homogenization	2503: Ultrasound and Photoacoustic Guided Tissue
Imaging Using Linear Array Transducer: A Pilot In Vivo	with a Multimode Fiber Applied to Optical Resolution	Temperature Mapping During Ablation Therapies
Study	Photoacoustic Microscopy Based on Linear Phased	Samuel John, et al.
Guilherme S. Pilotto Fernandes, et al.	Array Ultrasound Probe	Wayne State University
University of Sao Paulo	Juan José García-Garrigós, et al.	
	i3M, Consejo Superior de Investigaciones Científicas,	
	Universitat Politècnica de València	
Th12.13	Th12.14	Th12.15
1652: Spectroscopic Photoacoustic Imaging of	1778: Surgical Navigation System for Spinal Surgery with	1844: In Vivo High-Resolution 3D LED-Based
Osteoarthritis	Photoacoustic Endoscopy	Photoacoustic Imaging of Superficial Vascular Anatomy
Min Wu, et al.	Luyao Zhu, et al.	and Function
Eindhoven University of Technology	ShanghaiTech University	Mithun Kuniyil Ajith Singh, et al.
T1 40 40		CYBERDYNE, INC.
Th12.16	Th12.17	Th12.18
1867: Deep-Tissue Imaging with Fully Integrated Laser-	2210: Feasibility of Using Low-Energy Pulsed Laser	2506: Hyper-Beam Photoacoustic Array Imaging
Diode Based Handheld Photoacoustic and Ultrasound	Diode on Clinical Ultrasound Platforms for	Chun-Hsien Chiang, et al.
Probe	Photoacoustic and Transrectal Ultrasound Guided	National Tsing Hua University
Michael Jaeger, et al.	Laparoscopic Prostatectomy	
University of Bern	Yixuan Wu, et al.	
	Johns Hopkins University	

C1P-22: MSD - Ultrasound Devices, Systems and Methods I Chair(s): Roger Zemp (University of Alberta), Alessandro Ramalli (University of Florence)			
Th13.1	Th13.2	Th13.3	
1082: An FPGA-Based 15-Level Arbitrary Waveform	1089: Electronic Phantom for Arterial Wall Movement and	1148: Transceiver ASIC Design for High-Frame-Rate 3D	
Generator System with Phase/Frequency Modulation for	Blood Flow	Intracardiac Echocardiography	
Ultrasound Coded Excitation Using Pulse-Amplitude	Stefano Ricci, et al.	Yannick Hopf, et al.	
Modulation (PAM)	University of Florence	TU Delft	
Amauri Amorin Assef, et al.			
Federal University of Technology-Paraná (UTFPR)			

Th13.4 1240: Imaging Blood Flow Velocity and Estimating Wall Shear Stress in an Individual-Specific Left Coronary Artery Using High-Frequency, Forward-Viewing Ultrasound: A Phantom Study Saeyoung Kim, et al. Mechanical Engineering, BioEngineering Graduate Program, Georgia Institute of Technology	Th13.5 1242: Deep Learning Image Enhancement for Handheld Point-of-Care Ultrasound Ouwen Huang, et al. Duke University	Th13.6 1428: A Real-Time Color Doppler Ultrasound Imaging System on a Single System-on-Chip Solution with Single Instruction Multiple Data Optimization Seongjun Park, et al. Sogang University
Th13.7 1434: An Integrated High Power Arbitrary Waveform Generator and Modulator Stefano Passi, et al. STMicroelectronics	Th13.9 1864: Ultrasound Research Platform for 3D Ultrafast Diverging Waves Imaging Marcin Lewandowski, et al. us4us Ltd.	Th13.10 1941: Integrating Ultrasound Research System with NVIDIA GPU Processing Using GPUDirect RDMA Marcin Lewandowski, et al. us4us Ltd.

Chair(s): Aiguo Han (University of Illinois) Th14.1	Th14.2	Th14.3
1336: Measurements of Backscattering Coefficients of Ex-Vivo Human Liver Samples: Analysing the Backscattering to Monitor HIFU Procedure with Ultrasound Adrien Rohfritsch, et al. LabTAU	1366: Composite Tissue-Mimicking Phantom Fabrication by 3D-Printing of Hydrogels for Ultrasound Shear Wave Imaging Jinping Dong, et al. The University of Hong Kong	1371: Single Track Location Placental Elastography Reveal Viscoelastic Signatures Ex-Vivo Siladitya Khan, et al. University of Rochester
Th14.4	Th14.5	Th14.6
1724: Machine Learning Improves Early Detection of Liver Fibrosis by Quantitative Ultrasound Radiomics Maryam Al-Hasani, et al. University Of Pennsylvania Th14.7 2064: Deep Learning to Assess Hepatic Steatosis	1735: Multifrequency Ultrasound Tissue Characterization for the Detection of Liver Steatosis Mawia Khairalseed, et al. University of Texas at Dallas Th14.8 2279: Comparative Performance of 1D and 2D	1853: Refraction-Based Speed of Sound Estimation in Layered Media: Proof of Concept Baptiste Hériard-Dubreuil, et al. E-Scopics / LTS5, EPFL Th14.9 1141: Ultrasonic Evaluation of Liver Fibrosis Using
Severity Using Ultrasound B-Mode Images	Regularized Quantitative Ultrasound for Curvilinear	Radiomics of Homodyned-K Parametric Imaging
Pedro Vianna, et al.	Transducers in the Presence of Aberration Induced	Anna Gao, et al.
University of Montreal Hospital	Clutter Hayley Whitson, et al. University of Wisconsin - Madison	Beijing University of Technology
Th14.10 1593: Prior Based Cascading of Attention Unets for		
Segmentation to Estimate Fat and Lean Mass from 3D		
Fetal Ultrasound Imaging		
Rohit Pardasani, et al.		
GE Healthcare		

C1P-24: MTC - Ultrasound Tissue Characterization Methods and Applications II Chair(s): Kenneth Hoyt (UT Dallas)		
Th15.1 1125: Ultrasonic Characterization of Rat Vagus Nerves Using 25 MHz Pulse Reflectometry Landon Ivy, et al. Cornell University	Th15.2 1212: Stability of Methods to Evaluate Global Speed of Sound Using Conventional Clinical Ultrasound Scanner Under Multiple Different Transmission/Reception Conditions Takuma Oguri, et al. Ultrasound General Imaging, GE Healthcare	Th15.3 1239: Age-Related Changes in Collagen Properties Detected by High-Resolution Acoustic Microscopy and Atomic Force Microscopy Anna Maeva, et al. UCL
Th15.4 1296: A Numerical-Model-Based Optimization Strategy for Design and Fabrication of Transversely Isotropic Tissue-Mimicking Phantoms Jinping Dong, et al. The University of Hong Kong	Th15.5 1561: Single Shot Pulse-Echo Based Attenuation Coefficient Estimation for Ultrasound Contrast Agents Jasleen Birdi, et al. KU Leuven	Th15.6 1734: Basic Study of Adaptive Smoothing Filters for Calculating High-Accurate Attenuation Maps Jun Yasuda, et al. FUJIFILM Healthcare Corporation
Th15.7 1887: Ultrasonic Screening of Equine Leg Bone with Weak Periostitis Taisei Tsubata, et al. Doshisha University	Th15.8 1934: Longitudinal Wave Velocity in the Skull of Streptozotocin-Induced Diabetic Rat Yuhi Haneda, et al. Doshisha University	

C1P-25: MTC - Tissue Characterization - Bone and other Tissues Chair(s): Kay Raum (Charite)		
Th16.1 1203: Acoustically Induced Electric Polarization in Bone and its Anisotropy Yuki Sakakura, et al. Tokyo University of Agriculture and Technology	Th16.2 1458: Preparation Conditions of Frozen Thin Section Specimens to Ensure Accuracy of Sound Velocity Evaluation in Ultrasonic Microscopy Suguru Seto, et al.	Th16.3 1669: Estimation of Thickness and Wave Speed in Cortical Bone Using Ultrasound Imaging: An Ex Vivo Study Amadou Sall Dia, et al.
Th16.4 2183: Classification of Cortical Bone Thicknesses Based on RF Signal Spectral Analysis Hossam Sultan, et al. London South Bank University	Chiba University Th16.5 2224: Estimation of Cortical Bone Strength Using CNN-Based Regression Model Hossam Sultan, et al. London South Bank University	Sorbonne Université, Laboratoire d'Imagerie Biomedicale Th16.6 2520: Quantitative Measurement of Viscoelastic Properties of Pre-Strained Thin-Walled Membranes Based on the Optical Coherence Elastography (OCE) Technique Ziwei Wang, et al. Northwestern University

C1P-26: MTH - Therapy III			
Chair(s): Emad Ebbini (University of Minnesota)			
Th17.1	Th17.2	Th17.3	
1106: Extraction of Acoustic Cavitation Region in	1370: Angle Monitoring of Directional Energy Deposition	1631: Intraoperative HIFU Treatment of the Pancreas	
Ultrasound Image Using Fundamental and Nonlinear	for Catheter-Based Ultrasound Thermal Therapy Using	Using a Toroidal Transducer Under Doppler Guidance for	
Echo Components Obtained by Triplet-Pulse Sequence	Fitted Changes in Ultrasound Backscatter Energy	Locally Advanced Pancreatic Adenocarcinoma. In Vivo	
Shin Yoshizawa, et al.	Imaging: Ex Vivo Investigation	Results in a Pig Model	
Tohoku University	Chengzhi Yang, et al.	David Melodelima, et al.	
	Xi'an JiaoTong University	LabTAU - INSERM	

Th17.4	Th17.5	Th17.6
1662: Patient-Specific Treatment Planning for Clinical	2100: Soft Tissue Aberration Correction for Histotripsy	2391: Ultrasound-Guided Boiling Histotripsy Ablation
Interstitial Ultrasound Thermal Ablation of Focal Prostate	Using Acoustic Emissions from Cavitation Cloud	System for Abdominal Targets: Acute and Chronic
Cancer	Collapses	Studies in Porcine Liver and Kidney
Pragya Gupta, et al.	Ellen Yeats, et al.	Tatiana Khokhlova, et al.
University of California San Francisco	University of Michigan	University of Washington

C1P-27: MTH - Therapy IV		
Chair(s): Mathieu Pernot (ESPCI Paris), David Melodelima (INSERM)		
Th18.1	Th18.2	Th18.3
1464: An Analysis of Ultrasonic Stimulation Effects on C.	1474: Low Frequency Nanobubbles-Enhanced	1599: Tissue Engineering Acoustophoretic (TEA) Set-Up
Elegans Organisms Motility	Ultrasound Histotripsy of Breast Cancer Tumors	Enhances Osteogenic Potential of Mesenchymal Stromal
Andrea Francovich, et al.	Mike Bismuth, et al.	Cells in Anisotropic 3-D Constructs
University of Pavia	Tel Aviv University	Hui Zhang, et al.
	·	BIH Center for Regenerative Therapies, Charite
Th18.4	Th18.5	Th18.6
1613: Electronic Steering Capabilities of Aberration	1903: Enhancement of Ultrasound-Mediated Blood-Brain	2014: Ultrasound Neuronal Activation in Mice: A
Correction for Transcranial Histotripsy	Barrier Opening by Aggregating Microbubbles via an	Parametric Study
Ning Lu, et al.	Acoustic Vortex	Hanaa Malloul, et al.
University of Michigan	Shifang Guo, et al.	inserm, iBrain
	Xi'an Jiaotong University	
Th18.7	Th18.8	
2170: Model Dependent Modulation of Radiotherapeutic	2540: Adaptive Intraprocedural MRI-Based Planning of	
Efficacy with Lipid-Shelled Oxygen Microbubbles	tFUS for Neuromodulation in Human Subjects	
Phillip Durham, et al.	Richard Bouchard, et al.	
University of North Carolina at Chapel Hill	University of Texas MD Anderson Cancer Center	

C1P-28: MTN - Treatment Monitoring		
Chair(s): Himanshu Shekhar (IIT Gandhinagar)		
Th19.1	Th19.2	Th19.3
1012: The Dynamic F-Number and Shading Weights	1489: Hemispherical-Array Passive Acoustic Mapping	1806: Deep Learning Based Super-Resolved Mapping for
Determined by Element Directivity for Passive Acoustic	Using Sparse Matrix-Based Delay Multiply and Sum	High Concentration Phase-Change Nanodroplets in
Mapping	Beamforming	Tissue-Mimicking Phantoms
Chunqi Li, et al.	Shukuan Lu, et al.	Anqi Huang, et al.
School of Electronic and Electrical Engineering, University of	Xi'an Jiaotong University	School of Life Science and Technology, Xi'an Jiaotong
Leeds		University
Th19.4	Th19.5	Th19.6
2060: Contrast-Enhanced Imaging of Histotripsy Bubble	2152: Confocal Ultrasound Doppler for Investigating	2202: Methods for Passive Acoustic Mapping of Focal
Clouds Using Chirp Coded Excitation and Volterra	Neurovascular Responses to Ultrasound Deep Brain	Cavitation Through Prefocal Interference in the Human
Filtering	Stimulations	Spine: A Simulation Study
Vishwas Trivedi, et al.	Taehyung Kim, et al.	Andrew Frizado, et al.
Indian Institute of Technology Gandhinagar	Sungkyunkwan University	University of Toronto

Th19.7	Th19.8	Th19.9
2372: Monitoring of Radiofrequency Ablation Using Echo	1414: Intravital Imaging of Ultrasound-Mediated	2369: Characterization of Acoustic Emissions in
Decorrelation Imaging in Ex Vivo Hepatocellular	Macromolecule Delivery Through the Blood Tumor	Subharmonic Frequency Domain for Detection and
Carcinoma	Barrier in a Murine Glioma Model with Two-Photon	Monitoring of Therapeutic Microbubble-Mediated
Mohamed Abbass, et al.	Microscopy	Treatments
Military Technical College	Weifeng Huang, et al.	Ishan Ramaiah, et al.
	Shenzhen University	Applaud Medical

C1P-29: NAF - Acoustic Microfluidics, NUA - Underwater Acoustics and NFM - Flow Measurement II		
Chair(s): Nishal Ramadas (Hy-Met Limited, UK)		
Th20.1	Th20.2	
1369: Study of Acoustofluidics and Microparticle Motion	1622: Thermal Characteristics During Ultrasonic	
Based on Nonhomogeneous Acoustic Field Induced by	Atomization of Single Droplets	
SAW	Balasubramanian Nallannan, et al.	
Chuanjun Zhang, et al.	University of Eastern Finland	
South China University of Technology	, and the second	
Th20.4	Th20.5	Th20.6
1748: Low-Cost Underwater Ultrasonic Phased Array	1874: Development of Ultrasonic Shrimp Monitoring	2308: Underwater Object Detection Using a Directional
Research Platform	System Based on Machine Learning Approaches	Collimated Low Frequency Ultrasonic Beam (DCUB)
Tejus Rao, et al.	Fu-Sung Lin, et al.	Eric Davis, et al.
Harvey Mudd College	National Cheng Kung University	LANL
Th20.7		
2324: Ultrasonic Fluid Velocity Estimation System with		
Self-Optimising Switched Mode Transmit Scheme		
Harry Clegg, et al.		
University of Leeds		

C1P-30: NAS - Acoustic Sensors		
Chair(s): Kentaro Nakamura (Tokyo Institute of technology, Japan), David Greve (Carnegie Mellon University, USA)		
Th21.1	Th21.2	Th21.3
1042: Evaluation of the Ultrasonic Micro-Displacement	1043: Ultrasound Non-Contact Sensor Using Flexural	1053: Development of an Ultrasonic Probe for
Measurement System with Thermophone for Non-	Vibration	Measurements of the Wind Incidence Angle
Contact Cardiac Pulse Monitoring	Natsumi Nakaoka, et al.	Guy Feuillard, et al.
Takaaki Asada, et al.	Doshisha University	Insa Centre Val de Loire
Murata Manufacturing Co., Ltd.		
Th21.4	Th21.5	Th21.6
1202: Through-Wall Acoustically Linked Temperature	1360: GHz Phonon Biosensor Using Free-Standing SiN	1430: Broadband Stack-Layer 3 MHz - 11 MHz Dual-
Sensor	Nanofilm with Real-Time Monitoring by Asynchronous	Frequency Ultrasound Transducers for Photoacoustic
Vladimir Pashchenko, et al.	Optical Sampling Picosecond Ultrasonics	Imaging
Silicon Austria Labs GmbH	Akira Nagakubo, et al.	Yiqi Cai, et al.
	Osaka University	Beihang University

Th21.7	Th21.8	Th21.9
1523: Wearable Water-Filled Soft Transparent Pressure	1723: A Piezoelectric Gyroscope with Tilted C-Axis	2151: Long-Distance SAW Sensor Interrogation
Sensor Based on Acoustic Guided Waves	ScAIN Thin-Films	David Greve, et al.
Yuan Lin, et al.	Yuna Koike, et al.	Carnegie Mellon University
School of Mechanical Engineering, Shanghai Jiao Tong	Waseda University	
University		

C1P-31: NSH – Structural Health Monitoring		
Chair(s): Bernie Tittmann (Pennsylvania State University, USA)		
Th22.1	Th22.2	Th22.3
1191: Research on Impact Localization of	1194: Unsupervised Wave Physics-Informed	1321: Leveraging Temporal Correlation to Denoise Ultrasonic
Discontinuous Structures with Holes Based on	Representation Learning for Ultrasonic Guided	Guided Waves in Long-Term Structural Health Monitoring
Ultrasonic Guided Waves	Wavefield Reconstruction	Kang Yang, et al.
Xiaobo Rui, et al.	Harsha Tetali, et al.	University of Florida
Tianjin University	University of Florida	
Th22.4	Th22.5	
1491: Direct Wave Propagation Analysis for Ice	2126: Embedded Sensors for Damage Detection and	
Accretion Assessment on a Composite Plate Using	Location in Carbon-Fibre-Reinforced Composites	
Ultrasonic Guided Waves	Morgan Rogers, et al.	
Faisal Mehmood Shah, et al.	University of Bath	
Goethe-Universität Frankfurt am Main		

C1P-32: NMC – Material & Defect Characterization		
Chair(s): Walter Arnold (Fraunhofer Institute for NDT, Germany)		
Th23.1	Th23.2	Th23.3
1152: Linking Ultrasound Data to Manufacturing	1309: Comparison of More or Less Noisy Quartz	1495: On Estimation of Sound Velocity and Attenuation in
Parameters of 3D-Printed Polymers Using Supervised	Crystal Resonators by X-Rays Scattering	Common 3D-Printing Filaments
Learning	Alok Pokharel, et al.	Shafaq Zia, et al.
Shafaq Zia, et al.	FEMTO-ST Institut	Luleå University of Technology, Sweden
Luleå University of Technology, Sweden		
Th23.4	Th23.5	Th23.6
2036: Ultrasonic Measurement of Orthotropic Elastic	2037: The "PICUS" System in the Detection of Defects	2189: Damage Identification via Laplacian Filtering of Full
Constant of 3D-Printed Photopolymer Materials	on Panel Paintings and Wooden Boards	Wavefield Acquisitions
Josep Rodríguez-Sendra, et al.	Giosue Caliano, et al.	Michelangelo Maria Malatesta, et al.
Universitat Politècnica de València- Consejo Superior de	University Roma Tre	University of Bologna
Investigaciones Científicas.		
Th23.7	Th23.8	
2253: Influence of 3D Printing Parameters on Acoustic	2255: Ultrasound-Driven Mapping of Interactions	
Properties of Metamaterials	Between a Droplet and a Solid Surface	
Mahdi Derayatifar, et al.	Muhammad Junaid, et al.	
Concordia University	Aalto University	

C1P-33: AMA - Materials for Acoustic Wave Devices II Chair(s): Sunil Bhave (Purdue University)		
Th24.1 1187: Large Signal Temperature Coefficient of Frequency Denny Limanto, et al. Qorvo	Th24.2 1446: Deposition and Evaluation of Highly Crystallized Ta2O5 Piezoelectric Thin Film on Pt Crystal Film Keisuke Matsuura, et al. University of Yamanashi	Th24.3 1611: Stress Anisotropy in a-plane Al0.7Sc0.3N(11-20)/Al2O3(1-102) Thin Films Prepared by Magnetron Sputter Epitaxy Akash Nair, et al. Fraunhofer IAF
Th24.4 1729: Hybrid FEM & Fresnel Diffraction Simulation of 3D GHz Acoustic Metalens Xing Haw Marvin Tan, et al. Institute of High Performance Computing, A-STAR	Th24.5 1744: Oxidation of Sputtered AlScN Films Exposed to the Atmosphere Minghua Li, et al. Institute of Microelectronics	Th24.6 1765: A Study of Bonding Materials for GHz Ultrasonic Wavefront Computing Daniel Ssu-Han Chen, et al. Institute of Microelectronics
Th24.7 1846: Material Parameter Extraction Method for Al1- xScxN Thin Films Using Multiple Linear Regression and Wafer-Level Uniformity Analysis Chen Liu, et al. Institute of Microelectrics, ASTAR	Th24.8 2254: Sub-100nm Al0.7Sc0.3N Thin Films for Next Generation Bulk Acoustic Wave Resonators and Filters Chen Liu, et al. Institute of Microelectrics, ASTAR	Th24.9 2439: Evaluation of Mechanical Q _m Factor of Sputter-Grown Pb(Zr _x Ti _{1-x})O ₃ Epitaxial Films Without Removing Substrate Yuki Shimizu, et al. Waseda University, ZAIKEN
Th24.10 2545: Extracting Q Factor of the Piezoelectric Thin Films from Film/High-Q Substrate HBAR Structure Motoshi Suzuki, et al. Waseda University, ZAIKEN	Th24.11 2569: Sub-6dB Aluminum Scandium Nitride Acoustic Delay Lines Shuai Shao, et al. Shanghaitech University	Th24.12 2577: GHz Electromechanical Coupling Hysteresis Curves for Ferroelectric ScAIN and Epitaxial MgZnO Films Naoki Ishii, et al. Waseda University, ZAIKEN

C1P-34: AMD - Modeling and Analysis of Acoustic Devices		
Chair(s): Sunil Bhave (Purdue University)		
Th25.1	Th25.2	Th25.3
1299: Acceleration of Hierarchical Cascading Technique	1412: Comparative Study of Vector Measurement of	1442: Non-Standard Functions Enabling Feasible
for Surface Acoustic Wave Device Simulations	Nonlinearity in SAW Devices Using Cross Domain	Microwave-Acoustic Ladder Filters
Dongchen Sui, et al.	Analyzer and Nonlinear Vector Network Analyzer	Carlos Caballero, et al.
Shanghai Institute of Microsystem and Information	Ryo Nakagawa, et al.	Universitat Autònoma de Barcelona
Technology	Murata Manufacturing Co., Ltd.	
Th25.4	Th25.5	
1550: Acoustic Wave Multiplexer Modules: A Completely	2133: Simulation of In-Band Third Order Nonlinearities in	
Analytical Synthesis Method	SAW Resonators and Filters	
Eloi Guerrero, et al.	Marta González-Rodríguez, et al.	
Universitat Autònoma de Barcelona	Universitat Politècnica de Catalunya (UPC)	

C1P-35: TPM - Piezoelectric Transducer Materials and Applications Chair(s): Xiaoning Jiang (NC State University)		
Th26.1 1038: Development of Silicon Photonic Immersion Opto- Mechanical Ultrasound Sensor Array with Ultra-Thin Membrane: Preliminary Study Sangwoo Nam, et al.	Th26.2 1093: Metallurgical AuSn Bonding of Piezoelectric Layers Per Kristian Bolstad, et al. University of South-Eastern Norway	Th26.3 1406: Bioinspired Transducer and Second-Generation Voltage Conveyor for a Sonar System Gianluca Barile, et al. University of L'Aquila
Th26.4 1655: Enhanced Resolution Phase Transformations in a Nitinol Cymbal Ultrasonic Device Struan Smith, et al. University of Glasgow	Th26.5 1838: Incorporating Stainless Steel and Titanium Back Masses in Twice Planar Folded Ultrasonic Scalpels for Robotic Surgery Abdul Hadi Chibli, et al. University of Glasgow	Th26.6 1997: Parameter Extraction of Thin-Film Scandium- Doped Aluminum Nitride in Piezoelectric Over Silicon-on- Nothing Platform Sagnik Ghosh, et al. Institute of Microelectronics, A-STAR
Th26.7 2027: High-Quality Single-Crystal Piezoelectric Aluminum Nitride Grown on Gallium Nitride Transition Layer on Sapphire Substrate Binghui Lin, et al. The Institute of Technological Sciences, Wuhan University	Th26.8 2098: Calibration of Air-Coupled Ultrasonic Phased Arrays. Is It Worth It? Gianni Allevato, et al. Technische Universität Darmstadt	Th26.9 2162: Maximization of Transmitted Acoustic Intensity from Silicon Integrated Piezoelectric Ultrasound Transducers Gandhika Wardhana, et al. TU Delft
Th26.10 2262: A New Technique for Electrodeless Testing Piezoelectric Plates Applied to LiNbO3 Transducers Yuliia Kominko, et al. Taras Shevchenko National University of Kyiv	Th26.11 2286: Wearable Electrostrictive Row-Column Arrays Mahyar Ghavami, et al. University of Alberta	Th26.12 2405: High-Attenuation Backing Layer for Intracardiac Echocardiography Catheter Heesoo Kim, et al. Pohang University of Science and Technology
Th26.13 2438: Properties of a Fully Printed Ultrasound Transducer on Flexible Substrate Christoph Leitner, et al. Graz University of Technology	Th26.14 1953: Development of Flexible Ultrasound Transducers with Optical Shape Sensing Fiber for Medical Imaging Weicen Chen, et al. Shenzhen Institutes of Advanced Technology	

Patron Seminars

FUJIFILM VisualSonics

Tuesday, October 11 10:00 – 10:30 CET Sala Mosaici 1 - Casinò 3.1

Vevo F2 Transcending Barriers: Ultra-high to low frequency imaging in one open research platform by Melissa Yin, Product Manager Stephen Buttars, Product Manager

Thursday, October 13 10:00 – 10:30 CET Sala Mosaici 1 - Casinò 3.1

Vevo F2 Transcending Barriers: Ultra-high to low frequency imaging in one open research platform by Melissa Yin, Product Manager Stephen Buttars, Product Manager

Verasonics

Tuesday, October 11 10:30 – 11:30 CET Sala Welles - Casinò Mez.1

Cephasonics Ultrasound

Tuesday, October 11 15:30 – 16:30 CET Sala Welles - Casinò Mez.1

Moving From Eyeballs to Algorithms New system architectures to support algorithms by Richard Tobias, CTO

Conference Sponsors

IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society

Conference Patrons

Platinum

VISUALSONICS

FUJIFILM VisualSonics, Inc is the undisputed world leader in the development of real-time ultrasound and photoacoustic systems, providing tools specifically designed to support imaging-based research. Our cutting edge technologies support researchers at the world's top pharmaceutical and biotechnology companies, hospitals, and universities in their research efforts across areas including cardiovascular, cancer, neurobiology, developmental biology, and acoustics. These technologies support applications including genetic research, phenotypic studies, drug development, imaging systems development, and many more. VisualSonics' platforms combine a broad range of frequencies, high resolution, real-time data acquisition, and access to quantifiable data, all supported by powerful user-friendly software.

Verasonics designs and markets leading-edge Vantage™ Research Ultrasound Systems for academic and commercial investigators. These real-time, software-based, programmable ultrasound systems accelerate research by providing unsurpassed speed and control to simplify the data collection and analysis process. Researchers in more than 35 countries routinely use the unparalleled flexibility of the Vantage platform to advance the art and science of ultrasound through their own research efforts. In addition, every Vantage System can be upgraded to any configuration - protecting capital equipment investments and expanding research options. Verasonics' Vantage Systems are the ideal solution for ultrasound-driven research and development in biomedical, materials science, earth sciences, and the physics of acoustics.

Cephasonics provides high-performance AI-enabled OEM and development ultrasound platforms that are moving imaging from eyeballs to algorithms. Our systems are designed to execute complex real-time ultrasound scanning with AI/algorithms making new medical imaging solutions possible that can locate, recognize, and measure structures in the body. Cephasonics partners with both leading medical technology companies as well as medical entrepreneurs to bring innovative new ultrasound applications to market.

Vermon is leading the development and industrialization of state-of-the-art ultrasound solutions for medical and industrial applications.

Vermon's commitment is to innovate, design and manufacture advanced transducers and arrays with cutting-edge technology to support its customers' innovative ultrasound applications while strengthening their long-term market position with superior ultrasound imaging performances.

Ferroperm Piezoceramics A/S has been an industry-defining supplier of piezoelectric ceramics for nearly 70 years. Our expertly crafted components are widely used in the fields of medical ultrasound, underwater acoustics and non-destructive testing and can be found in vibration sensors and flowmeters across the globe as well. With our in-house product development and manufacturing steeped in proud tradition, we remain dedicated in producing ceramics of the highest quality with minimal batch-to-batch variation, tailored to our customers' exact specification requirements.

STMicroelectronics is 48,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An integrated device manufacturer, we work with more than 200,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of the Internet of Things and connectivity. ST is committed to becoming carbon neutral by 2027. Further information can be found at www.st.com.

us4us®

us4us Ltd. delivers advanced ultrasound research systems and OEM components optimized for software-defined ultrasound applications and GPU processing. Our solutions feature raw RF acquisition and high-speed PCle data streaming, enabling the end user to implement their own real-time CPU/GPU processing algorithms. An open SDK provides flexibility and easy integration with C/C++/Python/Matlab.

Our current offering:

us4R-lite — a low-cost, portable ultrasound research system featuring 256TX/64RX channels and an external Thunderbolt-3 or PCle interface. The first truly portable solution to work with your PC/notebook.

us4R — an advanced 2D/3D-ready ultrasound research system featuring 256TX/256RX channels and an extremely high data transfer rate (up to 24GB/s). The system is intended for real-time implementation of advanced/complex ultrasound processing algorithms on GPUs. us40EM — a credit-card sized ultrasound front-end module with 128TX/32RX channels for integration in the end-user system/solution.

Furthermore, we offer consulting and development services in the area of ultrasound methods, systems, and product development.

We provide technical expertise and engineering support for emerging applications in advanced ultrasound technologies. Daxsonics offers services to help companies develop ultrasound products. We work in at all stages of the life cycle providing a range of services including R&D, acoustic stack design, transducer design, electronics, software design, firmware design, and system integration. Our team of industry leading experts consistently come up with creative solutions to help develop market-disrupting products. We specialize in:

- High-frequency (>30MHz) ultrasound transducer and beamformer design
- Transducers and electronics for high-intensity focused ultrasound for thermal ablation and histotripsy
- Transducer design for small packaging and high-volume, low-cost manufacturing
- Advanced signal and image processing
- · Artificial intelligence and computer vision programming applied to ultrasound imaging

Electronics & Innovation, Ltd is a focused and dynamic company fulfilling the market demand for rugged and reliable RF power amplifiers. Founded in 2003, by former ENI engineers and executives, E&I was incorporated on the 16th of March, 2004. We are located in Rochester, NY, where all products are designed, assembled, and tested at our facility. E&I services and supports all major markets; operating globally through distributor outlets worldwide. E&I is committed to providing RF power amplifier solutions of the highest quality, durability, and ruggedness. Our amplifiers have under gone tests by the military and have proven to be even more reliable than the original ENI amplifiers. In addition unlike the old ENI amplifiers, they are CE marked, RoHS Compliant and meet all relevant emissions and safety standards. The Difference to You E&I has the people, the products, and the capabilities to meet your RF needs. Quality is and has been at the cornerstone of our growth – we constantly strive to be better, so that you can achieve more.

With its structure, starting with theoretical observations in application-specific simulations, transducer development and modular ultrasound systems including innovative software solutions, right up to signal processing, the department Ultrasound of the Fraunhofer IBMT covers the whole range of competences for system solutions in medical, biotechnological and technical applications. With more than 40 members of staff in three business areas, and three highly specialized working groups, it is the largest ultrasound research unit in Europe.

The EPSRC Centre for Doctoral Training in Future Ultrasonic Engineering (FUSE CDT) is a partnership between the Centre for Medical and Industrial Ultrasonics (C-MIU), at the University of Glasgow, and the Centre for Ultrasonic Engineering (CUE), at the University of Strathclyde. This partnership brings together two world-leading Centres of Excellence and creates the largest academic ultrasonic engineering unit in the world.

FUSE has been created to:

- Train Doctoral researchers with a focus on cohort-based learning experiences and skills training
- Build a skilled workforce to support the ultrasonic technology engineering community
- Help solve real-world challenges
- Advance the adoption of ultrasonic methods and applications in new areas
- Develop the ultrasound ecosystem by providing a platform for cross-sectoral and value-chain Knowledge Exchange

We look forward to seeing many of our community at IUS and to meeting new contacts wishing to find out more about FUSE and how we can collaborate.

PI Ceramic in Brief

Redefining the limits of what can be measured and moved, together with our customers: As a worldwide partner with more than 25 years of expertise, PI Ceramic develops and manufactures sophisticated piezoceramic components, subsystems and transducers in the areas of medical technology, industrial ultrasonics and precision dosing. Seventy of the currently 320 employees at the location in Thuringia, Germany, work in research and development. PI Ceramic is part of the PI Group, the innovation and market leader for high-precision positioning technology.

Polytec's innovative, non-contact optical metrology enables the systematic testing of dynamic mechanical response of ultrasonic transducers, devices and components. The applications range from the development of MEMS-based transducers, over micro-acoustic resonators, filters and sensors to ultrasonic tools for medical and industrial applications. Benefits are the ease of use, fast measurements with resolution in the sub-picometer range and frequency bandwidth up to the GHz regime. In addition our high-resolution 3D surface metrology option reveals all important details of the (micro) topography of your sample.

Silicon Austria Labs (SAL) is a top research center for Electronic Based Systems (EBS). At three locations (Graz, Villach, Linz), SAL is conducting research along the entire EBS value chain in the areas of sensor systems, power electronics, intelligent wireless systems and embedded systems to develop future-oriented solutions for industrial production, health, energy, mobility, safety and more. SAL brings together key players from industry, science and research and thus valuable expertise and know-how and conducts cooperative, application-oriented research along the value chain. Cooperative projects are co-financed by SAL and enable a fast and unbureaucratic project start.

Sonic Concepts[™] is a global leader in designing and delivering innovative therapeutic and focused ultrasound solutions, including the HIFUPlex[™] and NeuroFUS[™] systems. Every day, researchers and organizations around the world use our best-in-class customizable products and turnkey ultrasonic therapy and imaging solutions to make medical breakthroughs and solve complex problems.

S-Sharp provides cutting edge solutions to preclinical and clinical research ultrasound. Our core competence is the ability to leverage advanced electronics technologies to address our customer's needs by providing programmability, power and speed. Please visit us to know more about our new products for imaging and therapeutic applications.

TFT Corporation is a leading supplier of piezoelectric ceramics and single crystals PMN-PT / PIN-PMN-PT, which are manufactured by our group companies, Tayca Corporation in Japan and TRS technologies, Inc in the U.S. Our group also develops piezoelectric composite products achieving superior characteristics by combining resin and piezoelectric material. Our products are used in a variety of industries such as medical imaging, non-destructive testing, ultrasound sensor worldwide. We are also doing research for next-generation single crystal.

Telemed designs and manufactures clinical-grade portable ultrasound imaging systems and ultrasound beamformers for OEMs. options for researchers includes real-time channel data transfer, beamformed data, advanced triggering module and set of MATLAB, Python and LabView libraries and examples of use. Telemed's software development kit (SDK) offers an easy and fast way to develop customised user interface for stand-alone imaging systems and application-specific devices. The SDK is a set of C++ libraries providing user access to most system parameters.

Headquartered in Vilnius, Lithuania, Telemed has been designing and manufacturing ultrasound components and complete scanners since 1992. Production quality is confirmed by an ISO/EN 13485 quality system and US FDA 510k-cleared products.

Challenge

Vevo F2

TRULY REVOLUTIONARY!

The World's First Ultra High to Low Frequency (71-1 MHz) Ultrasound Imaging System

With the **Vevo F2**, FUJIFILM VisualSonics is expanding our reach to satisfy the imaging needs of acoustic researchers, ultrasound engineers and those that may benefit from ultra high to low frequency ultrasound imaging capabilities.

Flexible

Ultra high to low frequency imaging (71-1 MHz)

Open Architecture

Access pre-beamformed individual channel data (VADA)

One System

Adaptable for imaging small to large animals

Intuitive

Easy-to-use graphical interface

Photoacoustic Capable

Compatible with the Vevo LAZR-X laser cart for multi-modal imaging

Imagine the possibilities:

Plane-wave Implementation

Implement plane-wave techniques for ultrafast ultrasound imaging for applications such as ultrafast Doppler and super-resolution ultrasound

Beamforming Algorithm Development

Test novel beamforming techniques for image reconstruction

External Devices Syncing

Coordinate timing between HIFU pulses for imaging, or shear wave generation for elastography measurements

Small to Large Animals

Conduct imaging and analysis of small and large animals on one platform to streamline data collection

Expand your Ultrasound Research Capabilities

Verasonics offers new features and options for Vantage™ Research Ultrasound Systems

- GPU Toolkit and GPU Toolkit with GPU Direct reduce memory copy times and latency, increase frame rate
- NDE Research Software now featuring Plane Wave imaging and expanded versatility
- HIFUPlex™ Elite 3000 Focused Ultrasound (FUS) research solutions for large animals
- Row-Column Array and High Frequency Linear Array transducers provide new research capabilities
- New tools and techniques for Volume Imaging

Please visit booth #B1, our virtual booth at https://verasonics.com/ius2022-virtual-booth/ or contact us at sales@verasonics.com

Where Do You Want To Take Ultrasound?

OEM and engineering solutions that reduce development time for new clinical ultrasound products and applications

Al-based ultrasound that enables innovative clinical applications to recognize, locate and measure things in the body in real time

Come see us at booth B18

Learn more at www.cephasonics.com/IUS or contact us by email at IUS@cephasonics.com

Powering Innovation in Ultrasound

vermon

Custom ultrasound probe solutions

Tailored
ultrasound probes
and transducers
to meet your
applicative needs.

Everyday and for the past 35 years, we have been designing and manufacturing customized state-of-the-art ultrasound transducers for medical and industrial applications; providing startups, research labs, industrials, and medical device manufacturers, with the most innovative and cuttingedge ultrasound imaging probes solutions.

/ermon.com